• Title/Summary/Keyword: Ball Joint

Search Result 264, Processing Time 0.022 seconds

Mechanical reliability of Sn-37Pb BGA solder joints with high-speed shear test (고속전단 시험을 이용한 Sn-37Pb BGA solder joints의 기계적 신뢰성 특성 평가)

  • Jang, Jin-Kyu;Ha, Sang-Su;Ha, Sang-Ok;Lee, Jong-Gun;Moon, Jung-Tak;Park, Jai-Hyun;Seo, Won-Chan;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.65-70
    • /
    • 2008
  • The mechanical shear strength of BGA(Ball Grid Array) solder joints under high impact loading was investigated. The Sn-37Pb solder balls with a diameter of $500{\mu}m$ were placed on the pads of FR-4 substrates with ENIG(Electroless Nickel Immersion Gold) surface treatment and reflowed. For the High Temperature Storage(HTS) test, the samples were aged a constant testing temperature of $120^{\circ}C$ for up to 250h. After the HTS test, high speed shear tests with various shear speed of 0.01, 0.1, 1, 3 m/s were conducted. $Ni_3Sn_4$ intermetallic compound(IMC) layer was observed at the solder/Ni-P interface and thickness of IMC was increased with aging process. The shear strength increased with increasing shear speed. The fracture surfaces of solder joints showed various fracture modes dependent on shear speed and aging time. Fracture mode was changed from ductile fracture to brittle fracture with increasing shear speed.

  • PDF

Thermo-mechanical Behavior of WB-PBGA Packages with Pb-Sn Solder and Lead-free Solder Using Moire Interferometry (무아레 간섭계를 이용한 유연 솔더와 무연 솔더 실장 WB-PBGA 패키지의 열-기계적 변형 거동)

  • Lee, Bong-Hee;Kim, Man-Ki;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.17-26
    • /
    • 2010
  • Pb-Sn solder is rapidly being replaced by lead-free solder for board-level interconnection in microelectronic package assemblies due to the environmental protection requirement. There is a general lack of mechanical reliability information available on the lead-free solder. In this study, thermo-mechanical behaviors of wire-bond plastic ball grid array (WB-PBGA) package assemblies are characterized by high-sensitivity moire interferometry. Experiments are conducted for two types of WB-PBGA packages that have Pb-Sn solder and lead-free solder as joint interconnections. Using real-time moire setup, fringe patterns are recorded and analyzed for several temperatures. Bending deformations of the assemblies and average strains of the solder balls are investigated and compared for the two type of WB-PBGA package assemblies. Results show that shear strain in #3 solder ball located near the chip shadow boundary is dominant for the failure of the package with Pb-Sn solder, while normal strain in #7 most outer solder ball is dominant for that with lead-free solder. It is also shown that the package with lead-free solder has much larger bending deformation and 10% larger maximum effective strain than the package with Pb-Sn solder at same temperature level.

Comparison on the Kinematic Variables of Racket Movement According to Velocity in Tennis Serve (테니스 서브 속도에 따른 라켓 움직임의 운동학적 변인 비교)

  • Lee, Dong-Jin;Oh, Cheong-Hwan;Jeong, Ik-Su;Park, Chan-Ho;Lee, Gun-Hee
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.337-345
    • /
    • 2009
  • The purpose of this study were to find out the differences in kinematic variables of racket movement by performing the tennis serve. Three top male tennis players participated in this study. Three synchronized high-speed cameras were used to record the service action of top players for Three dimensional video analysis. The results of this study showed that (1) the velocity of the tennis racket at impact is important to the generation of racket velocity to Y-axis. This result indicates that forward motion and upward movement of the racket; (2) with respect to racket angular velocity at impact, the fast angular momentum of X-axis is important to generate the velocity of the tennis ball. This result indicate upward movement of the racket with a strong flexor of wrist joint; (3) the velocity of the tennis ball was influenced by the change of angular linking the Z-axis to -X-axis. This result indicates that the high velocity of the tennis ball is obtained from having the racket unitedly moving to the direction of the bill's flight at the acceleration interval and acquiring the distance of acceleration with the racket head vertically to the ground at the back scratching.

Reaction Characteristics between In-l5Pb-5Ag Solder and Au/Ni Surface Finish and Reliability Evaluation of Solder Joint (In-l5Pb-5Ag 솔더와 Au/Ni Surface Finish와의 반응 특성 및 접합 신뢰성 평가)

  • 이종현;엄용성;최광성;최병석;윤호경;박흥우;문종태
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • The metallurgical reaction properties between the pad consisted of 0.5 $\mu\textrm{m}$Au/5 $\mu\textrm{m}$Ni/Cu layers on a conventional ball grid array (BGA) substrate and In-15 (wt.%)Pb-5Ag solder ball were characterized during the reflow process and solid aging. During the reflow process of 1 to 5 minutes, it was observed that thin $AuIn_2$ or Ni-In intermetallic layer was formed at the interface of solder/pad. The dissolution rate of the Au layer into the molten solder was about $2\times 10^{-3}$ $\mu\textrm{m}$/sec which is remarkably low in comparison with a eutectic Sn-37Pb solder. After solid aging treatment for 500 hrs at $130^{\circ}C$, the thickness of $Ni_{28}In_{72}$ intermetallic layer was increased to about 3 $\mu\textrm{m}$ in all the conditions nevertheless the initial reflow time was different. These result show that In atoms in the solder alloy were diffused through the $AuIn_2$ phase to react with underlaying Ni layer during solid aging treatment. From the microstructural observation and shear tests, the reaction properties between In-15Pb-5Ag alloy and Au/Ni surface finish were analyzed not to trigger Au-embrittlement in the solder joints unlike Sn-37Pb composition.

  • PDF

Bending Impact Properties Evaluation of Sn-xAg-Cu Lead Free Solder Composition and aging treatment (시효처리한 Sn-xAg-Cu계 무연솔더 조성에 따른 굽힘충격 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.49-55
    • /
    • 2011
  • The failure of electronic instruments is mostly caused by heat and shock. This shock causes the crack initiation at the solder joint interface of PCB component which is closely related with the formation of intermetallic compound(IMC). The Ag content in Pb-free Sn-xAg-0.5Cu solder alloy used in this study was 1.0, 1.2 and 3.0 wt.%, respectively. After soldering with PCB component, isothermal aging was performed to 1000 hrs. The growth of IMC layer was observed during isothermal aging. The drop impact property of solder joint was evaluated by impact bending test method. The solder joint made with the solder containing lower Ag content showed better impact bending property compared with that with higher Ag content. On the contrary to this result, the solder joint made with solder containing higher Ag content showed better impact bending property after aging. It should be caused by the formation of fine $Ag_3Sn$, which relieved the impact. It showed consequently the different effect of fine $Ag_3Sn$ and coarse $Cu_6Sn_5$ particles formed in the IMC layer on the impact bending property.

Characterization of Tribocorrosion Behaviour of CoCr Alloy by Electrochemical Techniques in Several Corrosive Media

  • Escudero, M.L.;Diaz, I.;Martinez Lerma, J.F.;Montoya, R.;Garcia-Alonso, M.C.
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.68-73
    • /
    • 2018
  • Substitution of hip and knee joints by CoCr alloys is in great demand due to their high wear resistance and good biocompatibility. Understanding of tribocorrosion in joint replacements requires study of variables such as coefficient of friction and the choice of a proper corrosive medium in wear-corrosion tests carried out in the lab. The objective of this study was to characterize tribocorrosion behaviour of CoCr alloy with low (LCCoCr) and high carbon (HCCoCr) contents in several corrosive media: NaCl, Phosphate Buffer Solution (PBS), and PBS with hyaluronic acid (PBS-HA). Tribocorrosion tests were carried out on a pin-on-disk tribometer with an integrated electrochemical cell. A normal load of 5N was applied on the alumina ball counterpart at a rotation rate of 120 rpm. Coefficient of friction (COF) was measured and tribocorrosion behaviour was characterized by in situ application of electrochemical techniques. HCCoCr alloy immersed in PBS-HA showed the best tribocorrosion behaviour with the lowest COF. In this case, in situ measurement of corrosion potential and the impedance data under wear corrosion process showed an active state while passive film was continuously destroyed without possibility of regeneration.

A Kinematic analysis of Golf Swing Motion (골프 스윙동작의 운동학적 분석)

  • Shin, Sung-Hyu;Ko, Seok-Kon
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.101-114
    • /
    • 2003
  • The purpose of this study was to examine the major kinematicak variance to Increase the club head velocity during the driver swing two PGA prp-golfers utilizing 3-dimensional Image analyzing linear velocity of the club-head during the impact quantiatively. To achive these purpose, two high speed camera in 120 field/s and one high-speed camera in 500 field/s were used in this study. The program made by Younghoo Kwon(1944) was used to analysis the digitalization of reference point, digitalization of joint venter, synchronization, calculation of 3-Dimensional coordinate by DLT method, and smoothing. Through this study, the conclusions are as follow. 1. During the drivel swing, in the percentile of the total time, two pro-golfer showed 0.925, 0.929 second from adress to top-swing, 0.236, 0.929 second from top-swing to impact. 2. During the driver swing, in the displacement of the center of the body, two pro-golfer showed 45.3, 45.23% from adress, 44.3, 44.24% front impact. 3. In the velocity variance, The maximum club-head velocity two pro-golfer showed 43.36, 43.24m/s respectively the down swing. The ball velocity showed 63.12, 63.06m/s. 4. In the rotational angle of the shoulder joint. two pro-golfer showed $-13.5,-13.53^{\circ}$, during the back swing respectively. Two subject adressed opening status og upper body. 5. In the rotational angle of the right knee angle showed $156.3,154.7^{\circ}$ from the adress.

Development of Frozen Shoulder Rehabilitation Robot Based On Motion Capture Data (모션 캡쳐 데이터 기반의 오십견 재활 보조용 로봇의 개발)

  • Yang, Un-Je;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1017-1026
    • /
    • 2012
  • In this study, an exoskeleton-type robot is developed to assist frozen shoulder rehabilitation in a systematic and efficient manner for humans. The developed robot has two main features. The first is a structural feature: this robot was designed to rehabilitate both shoulders of a patient, and the three axes of the shoulder meet at one point to generate human-like ball joint motions. The second is a functional feature that is divided into two rehabilitation modes: the first mode is a joint rehabilitation mode that helps to recover the shoulder's original range of motion by moving the patient's shoulder according to patterns obtained by motion capture, and the second mode is a muscle rehabilitation mode that strengthens the shoulder muscles by suitably resisting the patient's motion. Through these two modes, frozen shoulder rehabilitation can be performed systematically according to the patient's condition. The development procedure is described in detail.

Comparison of Isokinetic Muscular Strength of Knee according to Female Volleyball and Table Tennis Players (여자 배구와 탁구선수의 등속성 운동에 따른 무릎근력 비교)

  • Park, Si-Eun;Kim, Yong-Youn;Park, Shin-Jun
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.7
    • /
    • pp.153-158
    • /
    • 2019
  • The purpose of this study was to compare the isokinetic muscular strength of the knee joint between female volleyball and table tennis players. A total of 27 elite volleyball players and 27 table tennis players participated in the study. This study measured both knee extensor and flexor strengths of volleyball and table tennis players using the isokinetic dynamic test. Peak torque was measured by performing maximal voluntary flexion and extension three times at $60^{\circ}/s$. Volleyball players had higher knee extensor and flexor strengths than table tennis players. No significant difference in both knee strengths was noted in table tennis players. However, volleyball players showed significant differences in both knee strengths. Height and weight showed a positive correlation with knee strength. This study found that volleyball players had greater knee strength than that of table tennis players. We also found that volleyball players have asymmetrical knee strength. Comparison with other sport players is warranted to better understand isokinetic muscular strength of the knee joint.

A Comparative Study of the Fatigue Behavior of SnAgCu and SnPb Solder Joints (무연솔더(SnAgCu)와 유연솔더(SnPb)의 피로 수명 비교 연구)

  • Kim, Il-Ho;Park, Tae-Sang;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1856-1863
    • /
    • 2004
  • In the last 50 years, lead-contained solder materials have been the most popular interconnect materials used in the electronics industry. Recently, lead-free solders are about to replace lead-contained solders for preventing environmental pollutions. However, the reliability of lead-free solders is not yet satisfactory. Several researchers reported that lead-contained solders have a good fatigue property. The others published that the lead-free solders have a longer thermal fatigue life. In this paper, the reason for the contradictory results published on the estimation of fatigue life of lead-free solder is investigated. In the present study, fatigue behavior of 63Sn37Pb, and two types of lead-free solder joints were compared using pseudo-power cycling testing method, which provides more realistic load cycling than chamber cycling method does. Pseudo-power cycling test was performed in various temperature ranges to evaluating the shear strain effect. A nonlinear finite element model was used to simulate the thermally induced visco-plastic deformation of solder ball joint in BGA packages. It was found that lead-free solder joints have a good fatigue property in the small temperature range condition. That condition induce small strain amplitude. However in the large temperature range condition, lead-contained solder joints have a longer fatigue life.