DOI QR코드

DOI QR Code

Development of Frozen Shoulder Rehabilitation Robot Based On Motion Capture Data

모션 캡쳐 데이터 기반의 오십견 재활 보조용 로봇의 개발

  • Yang, Un-Je (Dept. of Mechanical System Design Engineering, Seoul Nat'l Univ. of Science and Technology) ;
  • Kim, Jung-Yup (Dept. of Mechanical System Design Engineering, Seoul Nat'l Univ. of Science and Technology)
  • 양운제 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김정엽 (서울과학기술대학교 기계시스템디자인공학과)
  • Received : 2012.04.03
  • Accepted : 2012.06.25
  • Published : 2012.09.01

Abstract

In this study, an exoskeleton-type robot is developed to assist frozen shoulder rehabilitation in a systematic and efficient manner for humans. The developed robot has two main features. The first is a structural feature: this robot was designed to rehabilitate both shoulders of a patient, and the three axes of the shoulder meet at one point to generate human-like ball joint motions. The second is a functional feature that is divided into two rehabilitation modes: the first mode is a joint rehabilitation mode that helps to recover the shoulder's original range of motion by moving the patient's shoulder according to patterns obtained by motion capture, and the second mode is a muscle rehabilitation mode that strengthens the shoulder muscles by suitably resisting the patient's motion. Through these two modes, frozen shoulder rehabilitation can be performed systematically according to the patient's condition. The development procedure is described in detail.

본 논문에서는 오십견의 재활을 보다 체계적이고 효율적으로 보조할 수 있는 로봇의 개발을 소개하고자 한다. 개발된 로봇의 가장 큰 특징은 크게 두 가지로 나뉜다. 첫째, 구조적 특징으로써 로봇은 환자의 양쪽 어깨를 재활 치료할 수 있도록 설계되었고 롤, 피치, 요 축이 한 점에서 교차하도록 하여 사람과 같은 볼 조인트 움직임을 기구적으로 나타낼 수 있도록 하였다. 둘째, 기능적 특징으로써, 로봇은 두 가지 운동 모드를 가지고 있다. 첫 번째 모드는 관절재활모드로써 모션 캡처로부터 미리 얻어진 패턴대로 환자의 어깨를 운동시켜주어 어깨 관절의 운동 범위를 되찾을 수 있도록 한다. 두 번째 모드는 근육재활모드로써 환자의 움직임에 따라 로봇이 적절히 저항을 하여 근육을 강화시킨다. 이 두 가지 모드를 통하여 환자의 상태에 맞추어서 오십견 재활 보조를 체계적으로 수행할 수 있으며, 자세한 로봇개발 과정에 대한 내용을 본 논문에 서술하였다.

Keywords

References

  1. Ball, S. J., Brown, I. E. and Scott, S.H., 2007, "A Planar 3DOF Robotic Exoskeleton for Rehabilitation and Assessment," IEEE International Conf. on Engineering in Medicine and Biology Society, pp. 4024-4027.
  2. Scott, S. H., 1999, "Apparatus for Measuring and Perturbing Shoulder and Elbow Joint Positions and Torques During Reaching," Journal of Neuroscience Methods, pp. 119-127.
  3. Nef, T. and Riener, R., 2005, "ARMin-Design of a Novel Arm Rehabilitation Robot," IEEE International Conf. on Rehabilitation Robotics., pp. 57-60.
  4. Tsagarakis, N. G., Caldwell, D. G., 2003, "Development and Control of a 'Soft-Actuated' Exoskeleton for Use in Physiotherapy and Training," Autonomous Robots, Vol. 15, pp. 21-33. https://doi.org/10.1023/A:1024484615192
  5. Nanda, P. and Gebregiorgis, A., 2009, "Design and Development of an Upper Extremity Motion Capture System for a Rehabilitation Robot," IEEE International Conf. on Engineering in Medicine and Biology Society, pp. 7135-7138.
  6. Wade. E., and Mataric, M. J., 2009, "Design and Testing of Lightweight Inexpensive Motion-Capture Devices with Application to Clinical Gait Analysis," International Conference on Pervasive Computing Technology for Healthcare, pp. 1-7.
  7. Mirabella, O., Raucea, A., Fisichella, F. and Gentile, Luigi, 2011, "A Motion Capture System for Sport Training and Rehabilitation," International Conference on Human System Interactions, pp. 52-59.
  8. http://sizekorea.kats.go.kr/
  9. www.hds.co.jp/
  10. www.maxonmotor.com