• Title/Summary/Keyword: Baeyer-Villiger monooxygenases

Search Result 3, Processing Time 0.017 seconds

Potential of Baeyer-Villiger monooxygenases as an enzyme for polyethylene decomposition (폴리에틸렌 분해를 위한 효소로써 Baeyer-Villiger monooxygenases의 잠재력)

  • Yoon, Ye Rin;Jang, Yu-Sin
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.433-438
    • /
    • 2021
  • Polyethylene is widely used as an agricultural film, but eco-friendly technology is lacking for its decomposition. Thus, recently, much attention has been paid to develop a technology for biological polyethylene decomposition. It has been expected that several oxidation steps will be required in the biological degradation of polyethylene. First, secondary alcohol is formed on the polyethylene chain, and then the alcohol is oxidized to a carbonyl group. In the subsequent process, the carbonyl group is converted to an ester by Baeyer-Villiger monooxygenase (BVMO), and this ester bond is expected to be cleaved by lipase and esterase in the final step. In this work, we reviewed BVMO as one of the promising enzymes for polyethylene decomposition, in terms of its reaction mechanism, classification, and engineering. In addition, we also give a brief perspective on polyethylene decomposition using BVMO.

The Analysis and Application of a Recombinant Monooxygenase Library as a Biocatalyst for the Baeyer- Villiger Reaction

  • Park, Ji-Yeoun;Kim, Dong-Hyun;Kim, Su-Jin;Kim, Jin-Hee;Bae, Ki-Hwan;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1083-1089
    • /
    • 2007
  • Because of their selectivity and catalytic efficiency, BVMOs are highly valuable biocatalysts for the chemoenzymatic synthesis of a broad range of useful compounds. In this study, we investigated the microbial Baeyer-Villiger oxidation and sulfoxidation of thioanisole and bicyclo[3.2.0]hept-2-en-6-one using whole Escherichia coli cells that recombined with each of the Baeyer-Villiger monooxygenases originated from Pseudomonas aeruginosa PAOl and two from Streptomyces coelicolor A3(2). The three BVMOs were identified in the microbial genome database by a recently described protein sequence motif; e.g., BVMO motif(FXGXXXHXXXW). The reaction products were identified as (R)-/(S)-sulfoxide and 2-oxabicyclo/3-oxabicyclo[3.3.0]oct-6-en-2-one by GC-MS analysis. Consequently, this study demonstrated that the three enzymes can indeed catalyze the Baeyer-Villiger reaction as a biocatalyst, and effective annotation tools can be efficiently exploited as a source of novel BVMOs.

Oxidative Potential of Some Endophytic Fungi Using 1-Indanone as Substrate

  • Fill, Taicia Pacheco;Silva, Jose Vinicius Da;Oliveira, Kleber Thiago De;Silva, Bianca Ferreira Da;Rodrigues-Fo, Edson
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.832-837
    • /
    • 2012
  • The oxidative potential of the fungus Penicillium brasilianum, a strain isolated as endophytic from a Meliaceae plant (Melia azedarach), was investigated using 1-indanone as substrate to track the production of monooxygenases. The fungus produced the dihydrocoumarin from 1-indanone with the classical Baeyer-Villiger reaction regiochemistry, and (-)-(R)-3-hydroxy-1-indanone with 78% ee. Minor compounds that had resulted from lipase and SAM activities were also detected. The biotransformation procedures were also applied using a collection of Penicillium and Aspergillus fungi obtained from M. azedarach and Murraya paniculata. The results showed that Baeyer-Villiger were mostly active in fungi isolated from M. azedarach. Almost all fungi tested produced 3-hydroxy-1-indanone.