The Analysis and Application of a Recombinant Monooxygenase Library as a Biocatalyst for the Baeyer- Villiger Reaction

  • Park, Ji-Yeoun (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Dong-Hyun (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Su-Jin (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Jin-Hee (Korea Research Institute of Bioscience and Biotechnology) ;
  • Bae, Ki-Hwan (College of Pharmacy, Chungnam National University) ;
  • Lee, Choong-Hwan (Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2007.07.31

Abstract

Because of their selectivity and catalytic efficiency, BVMOs are highly valuable biocatalysts for the chemoenzymatic synthesis of a broad range of useful compounds. In this study, we investigated the microbial Baeyer-Villiger oxidation and sulfoxidation of thioanisole and bicyclo[3.2.0]hept-2-en-6-one using whole Escherichia coli cells that recombined with each of the Baeyer-Villiger monooxygenases originated from Pseudomonas aeruginosa PAOl and two from Streptomyces coelicolor A3(2). The three BVMOs were identified in the microbial genome database by a recently described protein sequence motif; e.g., BVMO motif(FXGXXXHXXXW). The reaction products were identified as (R)-/(S)-sulfoxide and 2-oxabicyclo/3-oxabicyclo[3.3.0]oct-6-en-2-one by GC-MS analysis. Consequently, this study demonstrated that the three enzymes can indeed catalyze the Baeyer-Villiger reaction as a biocatalyst, and effective annotation tools can be efficiently exploited as a source of novel BVMOs.

Keywords

References

  1. Baeyer, A. and V. Villiger. 1899. Eniwirkung des caro'schen Reagens auf Ketone. Ber. Dtsch. Chem. Ges. 32: 3625-3633 https://doi.org/10.1002/cber.189903203151
  2. Beecher, J., P. Richardson, and A. Willetts. 1994. Baeyer-Villiger monooxygenase dependent biotransfonnations: Stereospecific heteroatom oxidations by camphor-grown Pseudomonas putida to produce chiral sulfoxides. Biotechnol. Lett. 16: 909-912 https://doi.org/10.1007/BF00128623
  3. Baldwin, C. V. and J. M. Woodley. 2006. On oxygen limitation in a whole cell biocatalytic Baeyer-Villiger oxidation process. Biotechnol. Bioeng. 95: 362-369 https://doi.org/10.1002/bit.20869
  4. Carrea, G., B. Redigolo, S. Riva, N. Colonna, E. Gaggero, D. Battistel, and D. Bianchi. 1992. Effects of substrate structure on the enantioselectivity and stereochemical course of sulfoxidation catalyzed by cyclohexanone monooxygenase. Tetrahedron: Asymmetry 3: 1063-1068 https://doi.org/10.1016/S0957-4166(00)86040-1
  5. Carrea, G. and S. Riva. 2000. Properties and synthetic applications of enzymes in organic solvents. Angew. Chem. Int. Ed. Engl. 39: 2226-2254 https://doi.org/10.1002/1521-3773(20000703)39:13<2226::AID-ANIE2226>3.0.CO;2-L
  6. Chen, Y C., O. P. Peoples, and C. T. Walsh. 1988. Acinetobacter cyclohexanone monooxyganase: Gene cloning and sequence determination. J. Bacteriol. 170: 781-789 https://doi.org/10.1128/jb.170.2.781-789.1988
  7. Choi, J. H., T. K. Kim, Y. M. Kim, W C. Kim, K. B. Park, and I. K. Rhee. 2006. Cloning and characterization of a gene cluster for cyclohexanone oxidation in Rhodococcus sp. TK6. J. Microbiol. Biotechnol. 16: 511-518
  8. Donoghue, N. et al. 1976. The purification and properties of cyclohexanone oxygenase from Nocardia globurela CL1 and Acinetobacter NClB 9871. Eur. J. Biochem. 63: 175-192 https://doi.org/10.1111/j.1432-1033.1976.tb10220.x
  9. Fraaije, M. W. and N. M. Kamerbeek. 2002. Identification of a Baeyer-Villiger monooxygenase sequence motif. FEBS Lett. 518: 43-47 https://doi.org/10.1016/S0014-5793(02)02623-6
  10. Fraaije, M. W, J. Wu, D. P. H. M. Heuts, E. W. van Hellemond, J. H. L. Spelberg, and D. B. Janssen. 2005. Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining. Appl. Microbiol. Biotechnol. 66: 393-400 https://doi.org/10.1007/s00253-004-1749-5
  11. Han, N. S., Y. S. Jung, H. J. Eom, Y. H. Koh, J. F. Robyt, and J. H. Seo. 2002. Simultaneous biocatalytic synthesis of panose during lactate fermentation in Kimchi. J. Microbiol. Biotechnol. 12: 46-52
  12. lwaki, N., Y. Hasegawa, S. Wang, M. M. Kayser, and P. C. K. Lau. 2002. Cloning and characterization of a gene cluster involved in cyclopentanol metabolism in Comamonas sp. strain NCIMB 9872 and biotransformations effected by Escherichia coli expressed cyclopentanone 1,2-monooxygenase. Appl. Environ. Microbiol. 68: 5671-5684 https://doi.org/10.1128/AEM.68.11.5671-5684.2002
  13. Kamerbeek, N. M., D. E. Janssen, W. J. H. van Berkel, and M. W Fraije. 2003. Baeyer-Villiger monooxygenases, an emerging family of flavin-dependent biocatalysts. Adv. Synth. Catal. 345: 667-678 https://doi.org/10.1002/adsc.200303014
  14. Kamerbeek, N. M., M. J. Moonen, J. G. Van Der Ven, W. J. H. Van Berkel, M. W. Fraaije, and D. B. Janssen. 2001. 4Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB. A novel flavoprotein catalyzing Baeyer-villiger oxidation of aromatic compounds. Eur. J. Biochem. 268: 2547-2557 https://doi.org/10.1046/j.1432-1327.2001.02137.x
  15. Kayser, M. M. and C. M. Clouthier. 2006. New bioorganic reagents: Evolved cyclohexanone monooxygenase - why is it more selective? J. Org. Chem. 71: 8424-8430 https://doi.org/10.1021/jo061349t
  16. Kelly, D. R., C. J. Knowles, J. G. Mahdi, I. N. Taylor, and M. A. Wright. 1996. Enantioselective synthesis of threo-${\alpha}$,${\beta}$-dihydroxyphosphonates by asymmetric dihydroxylation of vinylphosphonates. An application to the stereocontrolled synthesis of (4S, 5S)-4-diethylphosphono-5-hydroxymethyl-2,2-dimethyl-1,3-dioxolane. Tetrahedron Asymmetry 6: 365-368
  17. Kostichka, K., S. M. Thomas, K. J. Gibson, V. Nagarajan, and Q. Cheng. 2001. Cloning and characterization of a gene cluster for cyclododecanone oxidation in Rhodococcus rubber CS1. J. Bacteriol. 183: 6478-6486 https://doi.org/10.1128/JB.183.21.6478-6486.2001
  18. Lee, C. Y., K. H. Kim, S. Y. Hur, J. H. Heo, M. H. Choi, S. K. Rhee, and C. H. Kim. 2006. Enzymatic synthesis of ascorbic acid fructoside by transfructosylation using levan fructotransferase. J. Microbiol. Biotechnol. 16: 64-67
  19. Mihovilovic, M. D., F. Rudroff, B. Muller, and P. Stanetty. 2003. First enantiodivergent Baeyer-Villiger oxidation by recombinant whole-cells expressing two monooxygenases from Brevibacterium. Bioorg. Med. Chem. Lett. 13: 1479-1482 https://doi.org/10.1016/S0960-894X(03)00137-9
  20. Mihovilovic, M. D., B. Muller, and P. Stanetty. 2002. Monooxygenase-mediated Baeyer-ViiIiger oxidations. Eur. J. Org. Chem. 2002: 3711-3730 https://doi.org/10.1002/1099-0690(200211)2002:22<3711::AID-EJOC3711>3.0.CO;2-5
  21. Morii, S., S. Sawamoto, Y. Yamauchi, M. Miyamoto, M. Iwami, and E. Itagaki. 1999. Steroid monooxygenase of Rhodococcus rhodochrous: Sequencing of the genomic DNA, and hyperexpression, purification, and characterization of the recombinant enzyme. J. Biochem. 126: 624-631 https://doi.org/10.1093/oxfordjournals.jbchem.a022494
  22. Panke, S., V. deLorenzo, A. Kaiser, B. Witholt, and M. G. Wubbolts. 1999. Engineering a stable whole cell biocatalyst capable of (S)-styrene oxide formation for continuous twoliquid phase applications. Appl. Environ. Microbiol. 65: 5619-5623
  23. Roberts, S. M. and P. W. H. Wan. 1998. Enzyme-catalysed Baeyer-Villiger oxidations. J. Mol. Cat. B Enzym. 4: 111-136 https://doi.org/10.1016/S1381-1177(97)00027-1
  24. Schmid, A. et al. 2001. Industrial biocatalysis today and tomorrow. Nature 409: 258-268 https://doi.org/10.1038/35051736
  25. Shin, S. Y. and J. H. Park. 1997. Activities of oxidative enzymes related with oxygen tolerance in Bifidobacteriurn sp. 7: 356-359
  26. Stewart, J. D. 1998. Cyclohexanone monooxygenase: A useful reagent for asymmetric Baeyer-Villiger reactions. Curr. Org. Chem. 2: 195-216
  27. Van der Werf, M. J. and A. M. Boot. 2000. Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology 146: 1129-1141 https://doi.org/10.1099/00221287-146-5-1129
  28. Wilkinson, B. and B. O. Bachmann. 2006. Biocatalysis in pharmaceutical preparation and alteration. Curr. Opin. Chem. Biol. 10: 169-176 https://doi.org/10.1016/j.cbpa.2006.02.006
  29. Willetts, A. 1997. Structural studies and synthetic applications of Baeyer-Villiger monooxygenases. TIBTECH 15: 55-62 https://doi.org/10.1016/S0167-7799(97)84204-7
  30. Wubbolts, M. G, O. Favre-Bulle, and B. Witholt. 1996. Biosynthesis of synthons in two liquid phase media. Biotechnol. Bioeng. 52: 301-308 https://doi.org/10.1002/(SICI)1097-0290(19961020)52:2<301::AID-BIT10>3.0.CO;2-M
  31. Yabe, K., N. Chihaya, S. Hamamatsu, E. Sakuno, T. Hamasaki, H. Nakajima, and J. W. Bennett. 2003. Enzymatic conversion of averufin to hydroxyversicolorone and elucidation of a novel metabolic grid involved in aflatoxin biosynthesis. Appl. Environ. Microbiol. 69: 66-73 https://doi.org/10.1128/AEM.69.1.66-73.2003
  32. Yoon, B. D., H. S. Kim, T. J. Kwon, J. W. Yang, G. S. Kwon, H. S. Lee, J. S. Ahn, and T. I. Mheen. 1992. Biocatalytic production of aldehyde by a methanol utilizing yeast, Hansenula nonferrnentans KYP-1 grown in methanollimited continuous culture. J. Microbiol. Biotechnol. 2: 278-283
  33. Zambianchi, F., P. Pasta, G. Carrea, S. Colonna, N. Gaggero, and J. M. Woodley. 2002. Use of isolated cyclohexanone monooxygenase from recombinant Escherichia coli as a biocatalyst for Baeyer-Villiger and sulfide oxidations. Biotechnol. Bioeng. 78: 489-496 https://doi.org/10.1002/bit.10207