Browse > Article
http://dx.doi.org/10.4014/jmb.1112.12014

Oxidative Potential of Some Endophytic Fungi Using 1-Indanone as Substrate  

Fill, Taicia Pacheco (Departament of Chemistry, Federal University of Sao Carlos)
Silva, Jose Vinicius Da (Departament of Chemistry, Federal University of Sao Carlos)
Oliveira, Kleber Thiago De (Departament of Chemistry, Federal University of Sao Carlos)
Silva, Bianca Ferreira Da (Departament of Chemistry, Federal University of Sao Carlos)
Rodrigues-Fo, Edson (Departament of Chemistry, Federal University of Sao Carlos)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.6, 2012 , pp. 832-837 More about this Journal
Abstract
The oxidative potential of the fungus Penicillium brasilianum, a strain isolated as endophytic from a Meliaceae plant (Melia azedarach), was investigated using 1-indanone as substrate to track the production of monooxygenases. The fungus produced the dihydrocoumarin from 1-indanone with the classical Baeyer-Villiger reaction regiochemistry, and (-)-(R)-3-hydroxy-1-indanone with 78% ee. Minor compounds that had resulted from lipase and SAM activities were also detected. The biotransformation procedures were also applied using a collection of Penicillium and Aspergillus fungi obtained from M. azedarach and Murraya paniculata. The results showed that Baeyer-Villiger were mostly active in fungi isolated from M. azedarach. Almost all fungi tested produced 3-hydroxy-1-indanone.
Keywords
Biotransformation; BV oxidation; 1-indanone; endophytic; Penicillium brasilianum; Aspergillus;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Tan, Q. G. and X. D. Luo. 2011. Meliaceous limonoids: Chemistry and biological activities. Chem. Rev. 111: 7437-7522.   DOI   ScienceOn
2 Waterman, P. G. and M. F. Grundon. 1983. Chemistry and Chemical Taxonomy of the Rutales, 1st Ed. Academic Press, London.
3 Alphand, V., G. Carrea, R. Wohlgemuth, R. Furstoss, and J. M. Woodley. 2003. Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol. 21: 318-323.   DOI   ScienceOn
4 Baldwin, C. V. F. 2008. The first 200-L scale asymmetric baeyer-villiger oxidation using a whole-cell biocatalyst. Org. Proc. Res. Develop. 12: 660-665.   DOI   ScienceOn
5 Fill, T. P. and E. Rodrigues-Fo. 2007. Four additional meroterpenes produced by penicillium sp found in association with melia azedarach. possible biosynthetic intermediates to Austin. Z. Naturforsch. 62b: 1035-1044.
6 Hassall, C. H. 1957. The Baeyer-Villiger Oxidation of Aldehydes and Ketones, Organic Reactions Vol. 9, John Wiley & Sons, Inc., New York.
7 Jiyeoun, P., D. Kim, S. Kim, J. Kim, K. Bae, and C. Lee. 2007. The analysis and application of a recombinant monooxygenase library as a biocatalyst for the baeyer-villiger reaction. J. Microbiol. Biotechnol. 17: 1083-1089.
8 Joly, S. and M. S. Nair. 2001. Efficient enzymatic kinetic resolution of 4-hydroxytetralone and 3-hydroxyindanone. Tetrahedron Asymmetry 12: 2283-2287.   DOI   ScienceOn
9 Kusari, S., M. Lamshoft, S. Zuhlke, and M. Spiteller. 2008. An endophytic fungus from Hypericum perforatum that produces hypericin. J. Nat. Prod. 71: 159-162.   DOI   ScienceOn
10 Leisch, H., K. Morley, and P. C. K. Lau. 2011. Baeyer-villiger monooxygenases: More than just green chemistry. Chem. Rev. 111: 4165-4222.   DOI   ScienceOn
11 Mihovilovic, M. D., B. Muller, and P. Stanetty. 2002. Monooxygenase-mediated baeyer-villiger oxidations. Eur. J. Org. Chem. 3711-3730.
12 Mihovilovic, M. D. 2006. Enzyme Mediated Baeyer-Villiger Oxidations. Curr. Org. Chem. 10: 1265-1287.   DOI   ScienceOn
13 Mlochowski, J., W. P. Czoch, M. P. Ottlik, and H. W. M. Lochowska. 2011. Non-metal and enzymatic catalysts for hydroperoxide oxidation of organic compounds. Open Catal. J. 4: 54-82.   DOI
14 Murahashi, S. I., S. Noji, T. Hirabayashia, and N. Komiya. 2005. Manganese-catalyzed enantioselective oxidation of C-H bonds of alkanes and silyl ethers to optically active ketones. Tetrahedron Asymmetry 16: 3527-3535.   DOI   ScienceOn
15 Pastre, R., A. M. R. Marinho, E. Rodrigues-Fo, A. Q. L. Souza, and J. O. Pereira. 2007. Diversidade de policetideos produzidos por especies de Penicillium isoladas de Melia azedarach e Murraya paniculata. Quim. Nova 30: 1867-1871.   DOI   ScienceOn
16 Podgorseka, A., S. Stavbera, M. Zupanb, and J. Iskra. 2006. Visible light induced 'on water' benzylic bromination with N-bromosuccinimide. Tetrahedron Lett. 47: 1097-1099.   DOI   ScienceOn
17 Resnick, S. M., D. S. Torok, K. Lee, J. M. Brand, and G. T. Gibson. 1994. Regiospecific and stereoselective hydroxylation of 1-indanone and 2-indanone by naphthalene dioxygenase and toluene dioxygenas. Appl. Environ. Microbiol. 60: 3323-3328.
18 Santos, R. M. G. and E. Rodrigues-Fo. 2002. Meroterpenes from penicillium sp found in association with Melia azedarach. Phytochemistry 61: 907-912.   DOI   ScienceOn
19 Santos, R. M. G., E. Rodrigues-Fo, W. C. Rocha, and M. F. S. Teixeira. 2003. Endophytic fungi from Melia azedarach. World J. Microbiol. Biotechnol. 19: 767-770.   DOI   ScienceOn
20 Stierle, A. and G. A. Strobel. 1995. The search for a taxol-producing microorganisms among endophytic fungi of the pacific Yew, Taxus brevifolia. J. Nat. Prod. 58: 1315-1324.   DOI