• Title/Summary/Keyword: Bactericidal

Search Result 581, Processing Time 0.028 seconds

Effects of Green and Taste Teas on the Growth and Vacuolating Toxin Titer of Helicobacter pylori (녹차 등의 기호차가 Helicobacter pylori의 증식 억제와 공포화 독소 역가에 미치는 영향)

  • 정양숙;강경희;장명웅
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.163-169
    • /
    • 2001
  • This study was undertaken to evaluate the effects of green and taste teas on the in-vitro antimicrobial activity and vacuolating toxin titer of Helicobacter pylori. Crude aqueous extracts prepared by adding 2 g of tea leaf or powder to 100 ml of boiling distilled water, and sterilized by passing through a 0.22 $mutextrm{m}$ membrane filter. Green tea, coffee, and ginger tea showed bactericidal activity on H. pylori within 3 hours. Black tea and ssangwha tea also showed bactericidal activity on H. pylori in 24 hours. Arrowroot tea show no bactericidal effect on H. pylori after 48 hours. Two fold diluted green tea and coffee decreased(1/10,000cfu) the growth of H. pylori in 24 hours, but the two fold diluted black tea, ssangwha tea, and ginger tea showed suppression effect upon of(1/10cfu) H. pylori in 24 hours. The two-fold and 10-fold diluted green tea, coffee and two-fold diluted black tea abrogated the vacuolating toxin titer of H. pylori, but the two-fold and 10-fold diluted ginger, ssangwha, ginseng, and arrowroot tea only reduced the vacuolating toxin titer of H.pylori from 1/2 to 1/8. These result suggest that green tea and coffee have effective antibacterial or bactericidal effects on H.pylori, and that they also have a neutralization effect upon the vacuolating toxin of H.pylori.

  • PDF

Bactericidal Effects of CaO (Scallop-Shell Powder) on Foodborne Pathogenic Bacteria

  • Bae Dong-Ho;Yeon Ji-Hye;Park Shin-Young;Lee Dong-Ha;Ha Sang-Do
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.298-301
    • /
    • 2006
  • This study was investigated the bactericidal effects of calcium oxide (CaO) on three common foodborne pathogenic bacteria: Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium. Each bacteria level was determined in a CaO solution (0.01, 0.03, 0.05, 0.10, 0.15, and $0.20\%$ [w/v]) exposed for either 15 sec, 30 sec, 1 min, 2 min, 3 min, 5 min, 10 min, or 30 min. All three bacteria were not greatly affected by CaO solutions at concentrations of 0.01 and $0.03\%$, however, the decline of E. coli $(99\%;\;2.78\;log_{10}CFU/mL)$, L. monocytogens $(45\%;\;1.44\;log_{10}CFU/mL)$, and S. typhimurium $(70\%;\;2.08\;log_{10}CFU/mL)$ was greatest when they were exposed to $0.05\%$ CaO solution for 10 min. Moreover, the bactericidal action of CaO was maintained for at least 24 h of storage. The results of this study provide evidence that CaO, as a substitute for synthetic chemical substances has potential for use in the disinfection and sanitization of foods and food processing equipment.

Analysis of the mechano-bactericidal effects of nanopatterned surfaces on implant-derived bacteria using the FEM

  • Ecren Uzun Yaylaci;Mehmet Emin Ozdemir;Yilmaz Guvercin;Sevval Ozturk;Murat Yaylaci
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.567-577
    • /
    • 2023
  • The killing of bacteria by mechanical forces on nanopatterned surfaces has been defined as a mechano-bactericidal effect. Inspired by nature, this method is a new-generation technology that does not cause toxic effects and antibiotic resistance. This study aimed to simulate the mechano-bactericidal effect of nanopatterned surfaces' geometric parameters and material properties against three implant-derived bacterial species. Here, in silico models were developed to explain the interactions between the bacterial cell and the nanopatterned surface. Numerical solutions were performed based on the finite element method. Elastic and creep deformation models of bacterial cells were created. Maximum deformation, maximum stress, maximum strain, as well as mortality of the cells were calculated. The results showed that increasing the peak sharpness and decreasing the width of the nanopatterns increased the maximum deformation, stress, and strain in the walls of the three bacterial cells. The increase in spacing between nanopatterns increased the maximum deformation, stress, and strain in E. coli and P. aeruginosa cell walls it decreased in S. aureus. The decrease in width with the increase in sharpness and spacing increased the mortality of E. coli and P. aeruginosa cells, the same values did not cause mortality in S. aureus cells. In addition, it was determined that using different materials for nanopatterns did not cause a significant change in stress, strain, and deformation. This study will accelerate and promote the production of more efficient mechano-bactericidal implant surfaces by modeling the geometric structures and material properties of nanopatterned surfaces together.

In Vitro Bactericidal and Anticancer Activity of New Metabolite, ARK42, Isolated from Aspergillus repens K42

  • Park, Je-Won;Song, Beom-Seok;Ryu, Do-Jin;Lee, Chan;Kim, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.1017-1021
    • /
    • 2002
  • A novel antibacterial metabolite, ARK42, was elated from a xerophilic fungal strain K42, and Identified as Aspergillus repens based on its morphological characteristics. The metabolite exhibited antibacterial activities towards Staphylococcus aureus, Bacillus cereus, and Pseudomonas aeruginosa, with MICs of 25, 12.5, and $3.125{\mu}g/ml$, respectively, and killed Pseudomonas aeruginosa with minimal bactericidal concentration (MBC) of $12.5{\mu}g/ml$. Furthermore, anticancer activities were demonstrated against human colon cancer DLD- 1 and lung cancer LXFL529 cells with an $IC_50$ of 10 and $1{\mu}g/ml$, respectively.

Influence of Suspending Agents on the Bactericidal Action of Cationic Surfactants and Amphoteric Surfactants -Influence on the Bactericidal Action of Codecyl Diaminoethyl Glycine and Benzalkonium Chloride- (분산안정제가 cationic surfactant와 amphoteric surfactant의 살균력에 미치는 영향 Dedecyl Diaminoethyl Glycine 및 Benzalkonium Chloride의 살균력에 미치는 영향)

  • 이진환
    • YAKHAK HOEJI
    • /
    • v.11 no.3_4
    • /
    • pp.17-21
    • /
    • 1967
  • At present, quarternary ammonium salts(cationic surfactant) and Tego compounds (amphoteric surfactant) are used as germicidal agent. In this paper, it was investigated whether their germicidal activities are influenced or not by some suspending agents which are added to them 0.005% benzalkonium chloride aq. solution and 0.05% dodecyl diaminoethyl glycine aq. solution sterilized respectively against Staphylococcus aureus and Escherichia coli within a minute. The solutions aded acacia, carboxymethyl cellulose, sodium alginate solutions to make to 0.005% to above surfactants solution decreased the germicidal activity, not being sterilized bacteria for more than 2 hours however, the solutions decreased the germicidal activity by addition of suspending agents such as acacia, carboxymethyl cellose, sodium alginate and bacteria were survival for more than 2 hrs, 0.05% of benzalkonium chloride and 0.1% dodecyl diaminoethyl glycine respectively would be sterilized within 10 minutes, when added to 5% suspending agents. This result show that bactericidal action of dodecyl diaminoethyl glycine is affected by suspending agents less than that of benzalkonium chloride.

  • PDF

Production of pediocin by Chemical Synthesis and Bactericidal Mode of Action

  • Koo, Min-Seon;Kim, Wang-June;Kwon, Dea-Young;Min, Kyung-Hee
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.149-153
    • /
    • 2001
  • To investigate the mode of bactericidal action for antimicrobial peptide, pediocin, synthetic and mutant pediocins were prepared by direct chemical synthesis. Native pediocin was purified from Pedio-coccus acidilactici M and its conformational structure and bactericidal functions were analyzed and compared to synthetic pediocin. Schematic mode of pediocin actions, how pediocin binds on the target cell membrane, penetrates and makes tunnel are proposed. For these purposes, primary and secondary structures of pediocin was analyzed and disulfide bond assignment was also done. The pediocin purified from P. acidilactici M had high effective bactericidal ability against gram positive bacteria, especially Listeria monocytogenes and was very stable at extreme pHs and even at high temperatures such as autoclaving temperature (121$^{\circ}C$). Pediocin was consisted of 44 amino acids with four cysteines. Novel synthetic peptides were achieved by solid phase peptide synthesis(SPPS) method. To explain the function of cysteine in C-terminal region, mutant pediocin, Ped[C24A+C44A], was synthesized and their structural and biological functions were analyzed. Second mutant pediocin, Ped[KllE], was prepared to explain the function of lysine at 11 of N-terminal part of pediocin, especially loop of $\beta$-sheet, and to predict the initial binding site of pediocin. The native and synthetic pediocins was showed random coil conformation by spectropolarimetry in moderate conditions. This conformation was observed in extreme conditions such as high temperature and low and high pHs, also. Circular dichroism(CD) data also showed the existence of $\beta$-turn structure in N-terminal part both native and synthetic pediocins. A structural model for pediocin predicts that 18 amino acids in the N-terminal part of the peptide assume a three-strand $\beta$-sheet conformation. This random coil in C-terminal part of pediocin was converted to folding structure, helix structure, in nonpolar solvents such as alcohol and TFE. The disulfide bond between $^{9}$ Cys and $^{14}$ Cys was concrete and inevitable, however, evidences of disulfide bond between $^{24}$ Cys and $^{44}$ Cys was not. Data of Ped[C24A+C44A], pediocin mutant showed that $^{44}$ Cys was required during killing the target cells but not inevitable, since Ped[C24A+C44A] still have bactericidal activity but much less than native pediocin. Another pediocin mutant, Ped[KllE], had still bactericidal activity, was controversial to propose that positive charge like as $^{11}$ Lys in loop or hinge in bacteriocin bound or helped to binding to microorganism with electrostatic interaction between cell membrane especially teichoic acid and positive amino acid nonspecifically. The conformation of pediocin among native, synthetic and mutant pediocins did not show big difference. The conformations between oxidized and reduced pediocin were almost similar regardless of native or synthetic.

  • PDF

Synergistic effect of lysozyme on bactericidal activity of magnolol and honokiol against a cariogenic bacterium, streptococcus mutans OMZ 176

  • Bae, Ki-Hwan;Oh, Hong-Rock
    • Archives of Pharmacal Research
    • /
    • v.13 no.1
    • /
    • pp.117-119
    • /
    • 1990
  • A combination of magnolol or honokiol with lysozyme isolated from the egg white of the Korean Ogol fowl (Korean natural monument No.265) exhibited synergistic effect of bactericidal activity against a typical cariogenic bacterium, Streptococcus mutans OMZ 176. The synergistic ratio increased with time dependence.

  • PDF

Serum bactericidal activity and disposition kinetics of enrofloxacin in Korean native goats (한국재래산양에서 Enrofloxacin의 혈청내 항균효과와 체내동태)

  • Yun, Hyo-in;Kim, Moo-youl;Park, Seung-chun
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.2
    • /
    • pp.321-330
    • /
    • 1997
  • Enrofloxacin is one of the second-generation quinolones which have been widely used to treat bacterial infections in various species including chicken, pig, horse and cattle. The objective of the present study was to describe the serum bactericidal activity(SBA) of enrofloxacin, its pharmacokinetic behaviors after intramuscular or intravenous administration to Korean native goats in the dose rate of 5mg/kg b.w. The results obtained through this study were as follows : 1. Sera collected from both sexes of Korean native goats administered 5mg/kg i.v. or i.m. showed potent antibacterial activities up to the 12 hours by way of the serum bactericidal activity. 2. Concentrations of enrofloxacin in the biological samples were measured by high-performance liquid chromatography(HPLC) so as to study pharmacokinetic characteristics. For detection of enrofloxacin, 10% TCA was optimal for protein precipitation and the mobile phase was 0.01M citric acid/methanol/acetonitrile(7/2/1, pH 3.5) with solid phase being the $C_{18}$ reversephase column and detection wavelength being 278nm. The limit of detection of enrofloxacin on HPLC was $0.05{\mu}g/ml$. 3. Pharmacokinetic profile of enrofloxacin administered 5mg/kg i.v. in Korean native goats was best described by two-compartment open model and that administered i.m. the same rate by one-compartment model. There were no sex differences in pharmacokineticl parameters. In conclusion, enrofloxacin showed potent in vivo antibacterial activity and excellent pharmacokinetic properties in Korean native goats, hence it may be used as a potential antibacterial in the veterinary clinical settings.

  • PDF

TiO$_2$ 광촉매를 이용한 중형 살균장치제작 및 최적살균조건 확립

  • Kim, Jung-Gon;Kim, Yong-Ho;Lee, Yeong-Sang;Lee, Jeong-Seop;Park, Don-Hui;Kim, Si-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.564-567
    • /
    • 2001
  • Optimal bactericidal conditions of pilot scale UV-$TiO_2$ photoreractor were studied. As the inner diameter of reactor increased. the bactedcidal efficiency decreased. Similarly bactedcidal effect was elevated according to the higher concentration of $TiO_2$. however. the effect was not repressed by the highest concentration(6.000 $mg/{\ell}$)of $TiO_2$ Bactericidal effect of muscovite bead was higher than that of glass bead. When bacterial cells were applied to the photoreacter for 1. 5. and 15 min, bactericidal effects were 62, 94.3. and 99.8%, respectively. When 30 $mg/{\ell}$ of $H_2O_2$ was added to the reaction mixture and sterilized for 5 min, the bactericidal efficiency was 99.8%.

  • PDF

Antimicrobial Efficacy of the Disinfectant Solution Nanoxil® Against Fish Pathogenic Bacteria

  • Cha, Chun-Nam;Jung, Won-Chul;Lee, Yeo-Eun;Yoo, Chang-Yeul;Kim, Suk;Lee, Hu-Jang
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.6
    • /
    • pp.496-501
    • /
    • 2010
  • Fish pathogenic bacteria are a considerable danger of farmed fish and a source of economic loss in the fish farming industry. In this study, $Nanoxil^{(R)}$ was compared to hydrogen peroxide and a silver colloid in terms of disinfection efficacy against E. tarda, V. anguillarum and S. iniae. A bactericidal efficacy test conducted by a broth dilution method was used to determine the lowest effective dilution of the disinfectant following exposure to test bacteria for 30 min at $4^{\circ}C$. $Nanoxil^{(R)}$ and test bacteria were diluted with distilled water (DW), hard water (HW) or an organic matter suspension (OM) according to the treatment condition. Under the OM condition, the bactericidal activity of $Nanoxil^{(R)}$ against E. tarda exhibited a lowered efficacy compared to that under the DW and HW conditions. $Nanoxil^{(R)}$ at 500 fold (dilutions on) under all of the conditions demonstrated a high bactericidal efficacy against S. iniae. As $Nanoxil^{(R)}$ possess bactericidal efficacy against fish pathogenic bacteria such as E. tarda, V. anguillarum and S. iniae, this disinfectant solution can be used to limit the spread of fish bacterial diseases.