DOI QR코드

DOI QR Code

Analysis of the mechano-bactericidal effects of nanopatterned surfaces on implant-derived bacteria using the FEM

  • Ecren Uzun Yaylaci (Faculty of Engineering and Architecture, Recep Tayyip Erdogan University) ;
  • Mehmet Emin Ozdemir (Department of Civil Engineering, Cankiri Karatekin University) ;
  • Yilmaz Guvercin (Trabzon Kanuni Training and Research Hospital, Department of Orthopaed & Traumatol) ;
  • Sevval Ozturk (Department of Civil Engineering, Recep Tayyip Erdogan University) ;
  • Murat Yaylaci (Department of Civil Engineering, Recep Tayyip Erdogan University)
  • Received : 2023.07.09
  • Accepted : 2023.09.20
  • Published : 2023.12.25

Abstract

The killing of bacteria by mechanical forces on nanopatterned surfaces has been defined as a mechano-bactericidal effect. Inspired by nature, this method is a new-generation technology that does not cause toxic effects and antibiotic resistance. This study aimed to simulate the mechano-bactericidal effect of nanopatterned surfaces' geometric parameters and material properties against three implant-derived bacterial species. Here, in silico models were developed to explain the interactions between the bacterial cell and the nanopatterned surface. Numerical solutions were performed based on the finite element method. Elastic and creep deformation models of bacterial cells were created. Maximum deformation, maximum stress, maximum strain, as well as mortality of the cells were calculated. The results showed that increasing the peak sharpness and decreasing the width of the nanopatterns increased the maximum deformation, stress, and strain in the walls of the three bacterial cells. The increase in spacing between nanopatterns increased the maximum deformation, stress, and strain in E. coli and P. aeruginosa cell walls it decreased in S. aureus. The decrease in width with the increase in sharpness and spacing increased the mortality of E. coli and P. aeruginosa cells, the same values did not cause mortality in S. aureus cells. In addition, it was determined that using different materials for nanopatterns did not cause a significant change in stress, strain, and deformation. This study will accelerate and promote the production of more efficient mechano-bactericidal implant surfaces by modeling the geometric structures and material properties of nanopatterned surfaces together.

Keywords

Acknowledgement

The research of the corresponding author is supported by a grant from Ferdowsi University of Mashhad (N2.59254)

References

  1. Alameda, M.T., Osorio, M.R., Pedraz, P. and Rodriguez, I. (2022), "Mechano-dynamic analysis of the bactericidal activity of bioinspired moth-eye nanopatterned surfaces", Adv. Mater. Interf., 9, 2270127. https://doi.org/10.1002/admi.202270127.
  2. Alaneme, K.K., Kareem, S.A., Olajide, J.L., Sadiku, R.E. and Bodunrin, M.O. (2022), "Computational biomechanical and biodegradation integrity assessment of Mg-based biomedical devices for cardiovascular and orthopedic applications: A review", Int. J. Lightweight Mater. Manuf., 5(2), 251-266. https://doi.org/10.1016/j.ijlmm.2022.02.003.
  3. Altabey, W.A., Noori, M., Alarjani, A. and Zhao, Y. (2020), "Nano-delamination monitoring of BFRP nano-pipes of electrical potential change with ANNs", Adv. Nano Res., 9(1), 1-13. https://doi.org/10.12989/ANR.2020.9.1.001.
  4. ANSYS (2013), Mechanical APDL, ANSYS Contact Technology Guide, Ansys, Inc., Canonsburg, Pennsylvania, U.S.A.
  5. Bailey, R.G., Turner, R.D., Mullin, N., Clarke, N., Foster, S.J. and Hobbs, J.K. (2014), "The interplay between cell wall mechanical properties and the cell cycle in Staphylococcus aureus", Biophys. J., 107(11), 2538-2545. https://doi.org/10.1016/j.bpj.2014.10.036.
  6. Bouafia, H., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Hussain, M. (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano Res., 11(3), 239- 249. https://doi.org/ 10.12989/anr.2021.11.3.239.
  7. Callister, W.D. and Rethwisch, D.D. (2013), Materials Science and Engineering, Nobel Akademik Yayincilik, 8, Baski.
  8. Cayley, S., Lewis, B.A., Guttman, H.J. and Record Jr, M.T. (1991), "Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo", J. Mol. Biol., 222(2), 281-300. https://doi.org/10.1016/0022-2836(91)90212-o.
  9. Cerioli, M., Batailler, C., Conrad, A., Roux, S., Perpoint, T., Becker, A., Triffault-Fillit, C., Lustig, S., Fessy, M.H., Laurent, F., Valour, F., Chidiac, C. and Ferry, T. (2020), "Pseudomonas aeruginosa implant-associated bone and joint infections: experience in a regional reference center in France", Front. Med., 7. https://doi.org/10.3389/fmed.2020.513242.
  10. Chouirfa, H., Bouloussa, H., Migonney, V. and Falentin-Daudre, C. (2019), "Review of titanium surface modification techniques and coatings for antibacterial applications", Acta Biomater., 83, 37-54. https://doi.org/10.1016/j.actbio.2018.10.036.
  11. Colling, E.W., (1984), "The Physical Metallurgy of Titanium Alloys, Metals Park (OH)", Am. Soc. Metals, 65-72.
  12. Cremet, L., Corvec, S., Bemer, P., Bret, L., Lebrun, C., Lesimple, B., Miegeville, A.F., Reynaud, A., Lepelletier, D. and Caroff, N. (2012), "Orthopaedic-implant infections by Escherichia coli: molecular and phenotypic analysis of the causative strains", J. Infect., 64(2), 169-175. https://10.1016/j.jinf.2011.11.010.
  13. Cui, Q., Liu, T., Li, X., Zhao, L., Wu, Q., Wang, X., Song, K. and Ge, D. (2021), "Validation of the mechano-bactericidal mechanism of nanostructured surfaces with finite element simulation", Colloids Surf. B, 206, 111929. https://doi.org/10.1016/j.colsurfb.2021.111929.
  14. De Breij, A., Riool, M., Kwakman, P.H.S., De Boer, L., Cordfunke, R.A., Drijfhout, J.W., Cohen, O., Emanuel, N., Zaat, S.A., Nibbering, P.H. and Moriarty, T.F. (2016), "Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP145", J. Control Release, 222, 1-8. https://doi.org/10.1016/j.jconrel.2015.12.003.
  15. Dickson, M.N., Liang, E.I., Rodriguez, L.A., Vollereaux, N. and Yee, A.F. (2015), "Nanopatterne polymer surfaces with bactericidal properties", Biointerphases, 10(2), 021010. https://doi.org/10.1116/1.4922157.
  16. Donlan, R.M. (2002), "Biofilms: microbial life on surfaces", Emerg. Infect. Dis., 8(9), 881-890. https://doi.org/10.3201/eid0809.020063.
  17. Eltaher, M.A., Almalki, T.A., Ahmed, K.I.E. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/10.12989/anr.2019.7.1.039.
  18. Ghanbari, A., Dehghany, J., Schwebs, T., Musken, M., Haussler, S. and Meyer-Hermann, M. (2016), "Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms", Sci. Rep., 6, 32097. https://doi.org/10.1038/srep32097.
  19. Gumbart, J.C., Beeby, M., Jensen, G.J. and Roux, B. (2014), "Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations", PLoS Comput Biol., 10(2), e1003475. https://doi.org/10.1371/journal.pcbi.1003475.
  20. Guvercin, Y., Abdioglu, A.A., Dizdar, A., Uzun Yaylaci, E. and Yaylaci, M. (2022a), "Suture button fixation method used in the treatment of syndesmosis injury: A biomechanical analysis of the effect of the placement of the button on the distal tibiofibular joint in the mid-stance phase with finite elements method", Injury, 53(7), 2437-2445 https://doi.org/10.1016/j.injury.2022.05.037.
  21. Guvercin, Y., Yaylaci, M., Dizdar, A., Kanat, A., Uzun Yaylaci, E., Ay, S., Abdioglu, A.A. and Sen, A. (2022b), "Biomechanical analysis of odontoid and transverse atlantal ligament in humans with ponticulus posticus variation under different loading conditions: finite element study", Injury, 53, 3879-3886. https://doi.org/10.1016/j.injury.2022.10.003.
  22. Hansen, E.N., Zmistowski, B. and Parvizi, J. (2012), "Periprosthetic joint infection: What is on the horizon?", Int. J. Artif. Organs, 35(10), 935-950. https://doi.org/10.5301/ijao.5000145.
  23. Ivanova, E.P., Linklater, D.P., Werner, M., Baulin, V.A., Xu, X., Vrancken, N., Rubanov, S., Hanssen, E., Wandiyanto, J., Truong, V.K., Elbourne, A., Maclaughlin, S., Juodkazis, S. and Crawford, R.J. (2020), "The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces", Proc. Natl. Acad. Sci. U.S.A., 117(23), 12598-12605. https://doi.org/10.1073/pnas.1916680117.
  24. Kuiper, J.W., Willink, R.T., Moojen, D.J., van den Bekerom, M.P. and Colen, S. (2014), "Treatment of acute periprosthetic infections with prosthesis retention: Review of current concepts", World J. Orthop., 5(5), 667-676. https://doi.org/10.5312/wjo.v5.i5.667.
  25. Kuma, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. https://doi.org/10.12989/ANR.2021.11.1.001.
  26. Li, X. (2016), "Bactericidal mechanism of nano-patterned surfaces", Phys. Chem. Chem. Phys., 18(2), 1311-1316. https://doi.org/10.1039/C5CP05646B.
  27. Li, X., Wu, B., Chen, H., Nan, K., Jin, Y., Sun, L. and Wang, B. (2018), "Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections", J. Mater. Chem. B, 6(26), 4274-4292. https://doi.org/10.1039/C8TB01245H.
  28. Linklater, D.P., Baulin, V.A., Juodkazis, S., Crawford, R.J., Stoodley, P. and Ivanova, E.P. (2021), "Mechano-bactericidal actions of nanostructured surfaces", Nat. Rev. Microbiol., 19(1), 8-22. https://doi.org/10.1038/s41579-020-0414-z.
  29. Maleki, E., Mirzaali, M.J., Guagliano, M. and Bagherifard, S. (2021), "Analyzing the mechano-bactericidal effect of nano-patterned surfaces on different bacteria species", Surf. Coat. Technol., 408. https://doi.org/10.1016/j.surfcoat.2020.126782.
  30. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/ANR.2019.7.3.181.
  31. Mirzaali, M.J., van Dongen, I.C.P., Tumer, N., Weinans, H., Yavari, S.A. and Zadpoor, A.A. (2018), "In-silico quest for bactericidal but non-cytotoxic nanopatterns", Nanotechnology, 29, 43LT02. https://doi.org/10.1088/1361-6528/aad9bf.
  32. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses - An FEM approach and experimental verification", Adv. Nano Res.,7(6), 419-429. https://doi.org/10.12989/ANR.2019.7.6.419.
  33. Pogodin, S., Hasan, J., Baulin, V.A., Webb, H.K., Truong, V.K., Phong Nguyen, T.H., Boshkovikj, V., Fluke, C.J., Watson, G.S., Watson, J.A., Crawford, R.J. and Ivanova, E.P. (2013), "Biophysical model of bacterial cell interactions with nano-patterned cicada wing surfaces", Biophys. J., 104(4), 835-840. https://doi.org/10.1016/j.bpj.2012.12.046.
  34. Ren, W., Wu, X. and Cai, R. (2022), "A hybrid artificial intelligence and IOT for investigation dynamic modeling of nano-system", Adv. Nano Res., 13(2), 165-174. https://doi.org/10.12989/anr.2022.13.2.165.
  35. Roy, A. and Chatterjee, K., (2021), "Theoretical and computational investigations into mechanobactericidal activity of nanostructures at the bacteria-biomaterial interface: A critical review", Nanoscale, 13, 647. https://doi.org/10.1039/D0NR07976F.
  36. Turner, R.D., Hurd, A.F., Cadby, A., Hobbs, J.K. and Foster, S.J. (2013), "Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture", Nat. Commun., 4, 1496. https://doi.org/10.1038/ncomms2503.
  37. Uzun Yaylaci, E., Yaylaci, M., Ozdemir, M.E., Terzi, M. and Ozturk, S. (2023), "Analyzing the mechano-bactericidal effect of nano-patterned surfaces by finite element method and verification with artificial neural networks" Adv. Nano Res., 15(2), 165-174. https://doi.org/10.12989/anr.2023.15.2.165.
  38. Vadillo-Rodriguez, V., Schooling, S.R. and Dutcher, J.R. (2009), "In situ characterization of differences in the viscoelastic response of individual gram-negative and gram-positive bacterial cells", J. Bacteriol., 191(17), 5518-5525. https://doi.org/10.1128/JB.00528-09.
  39. Velic, A., Hasan, J., Li, Z. and Yarlagadda, P. (2021), "Mechanics of bacterial interaction and death on nanopatterned surfaces", Biophys. J., 120, 217-231. https://doi.org/10.1016/j.bpj.2020.12.003.
  40. Westberg, M., Frihagen, F., Brun, O.C., Figved, W., Grogaard, B., Valland, H., Wangen, H. and Snorrason, F. (2015), "Effectiveness of gentamicin-containing collagen sponges for prevention of surgical site infection after hip arthroplasty: A multicenter randomized trial", Clin. Infect. Dis., 60(12), 1752-1759. https://doi.org/10.1093/cid/civ162.
  41. Whatmore, A.M. and Reed, R.H. (1990), "Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation", J. Gen. Microbiol., 136(12), 2521-2526. https://doi.org/10.1099/00221287-136-12-2521.
  42. Xia, L., Wang, R., Chen, G., Asemi, K. and Tounsi, A. (2023), "The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity", Adv. Nano Res., 14(4), 375-389. https://doi.org/10.12989/.2023.14.4.375.
  43. Yao, X., Jericho, M., Pink, D. and Beveridge, T. (1999), "Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy", J. Bacteriol., 181(22), 6865-6875. https://doi.org/10.1128/JB.181.22.6865-6875.1999.
  44. Yao, X., Walter, J., Burke, S., Stewart, S., Jericho, M.H., Pink, D., Hunter, R. and Beveridge, T.J. (2002), "Atomic force microscopy and theoretical considerations of surface properties and turgor pressures of bacteria", Colloids Surf. B, 23(2-3), 213-230. https://doi.org/10.1016/S0927-7765(01)00249-1.
  45. Yaylaci, M. (2022), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405.
  46. Yaylaci, M., Abanoz, M., Uzun Yaylaci, E., Olmez, H., Sekban, M.D. and Birinci, A. (2022a), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
  47. Yaylaci, M., Sengul Sabano, B., Ozdemir, M.E. and Birinci, A. (2022b), "Solving the contact problem of functionally graded layers resting on a homogeneous half-plane and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.
  48. Yaylaci, M., Uzun Yaylaci, E., Ozdemir, M.E., Ay, S. and Ozturk, S. (2022c), "Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack", Steel Compos. Struct., 45(4), 501-511. https://doi.org/10.12989/scs.2022.45.4.501.
  49. Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  50. Zagane, M.S., Moulgada, A., Yaylaci, M., Abderahmen, S., Ozdemir, M.E., Uzun Yaylaci, E., (2023), "Numerical simulation of the total hip prosthesis under static and dynamic loading (for three activities)", Struct. Eng. Mech., 86(5). https://doi.org/10.12989/sem.2023.86.5.000.
  51. Zhao, J., Tang, J., Zhou, W., Jiang, T., Wu, H., Liao, X. and Guo, M. (2022), "Surface integrity of gear shot peening considering complex geometric conditions: A sequential coupled DEM-FEM method", Surf. Coat. Technol., 449. https://doi.org/10.1016/j.surfcoat.2022.128943.
  52. Zhou, C., Koshani, R., O'Brien, B., Ronholm, J., Cao, X. and Wang, Y. (2021), "Bio-inspired mechano-bactericidal nanostructures: A promising strategy for eliminating surface foodborne bacteria", Curr. Opin. Food Sci., 39, 110-119. https://doi.org/10.1016/j.cofs.2020.12.021.