• Title/Summary/Keyword: Bacterial cellulose

Search Result 191, Processing Time 0.019 seconds

Dietary Effects of Fiber Produced from G\ulcorneruconocacetobacter hansenii on Digestive Tract and Lipid Metabolism in Rats (Gluconoacetobacter hansenii에 의해 생산된 섬유소 섭취가 흰쥐의 소화기관과 지질대사에 미치는 영향)

  • 조성희;이지연;최경호;최영선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.5
    • /
    • pp.802-807
    • /
    • 2002
  • This study was conducted to see effects of dietary bacterial fiber produced by Gluconoucetobacter hansenii on gross structure, and disaccharidase activities of small intestine and body lipid status in rats. Bacterial fiber was prepared by drying and alkali treatment of floating membrane produced IS days after the bacterial culture using coconut juice media. Male Sprague-Dawely rats of 320+10 g were grouped into three and fed 0.5% (w/w) cholesterol diets with three different dietary fibers, i .e. cellulose, and pectin and bacterial fiber, at the level of 2% (w/w). During four-week experimental period, food intakes and body weight gains were not different among three groups. Total lengths and jejunal fragment weights of small intestine did not differ among the three groups but cecal weight was higher in bacterial fiber groups than those of the other two groups. Colon content and fecal dry weight were lower in bacterial fiber group. Sucrase activity of the jejunal mucosa was lower in bacterial fiber group but maltase activity was not different from those of the other two groups. Plasma total cholesterol level was lower and that of HDL-cholesterol higher in pectin group than those of cellulose and bacterial fiber groups, the latter of which did not differ. Both in plasma and liver triglyceride levels were lower in bacterial fiber group than cellulose and pectin groups, and liver cholesterol level was lower in pectin group. Relative liver weights and Plasma activities of GOT md GPT were not different among three groups. It is concluded that bacterial fiber used in the present study had hypotriglyceridemic effect that help improve lipid status in the body.

Production of Bacterial Cellulose Using Waste of Beer Fermentation Broth (맥주발효 폐액을 이용한 미생물 셀룰로오스 생산)

  • Park, Joog Kon;Hyun, Seung Hoon;Ahn, Won Sool
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • Bacterial cellulose (BC) was produced by Gluconacetobacter hansenii PJK (KCTC 10505 BP) strains using the waste of beer fermentation broth. It contained more C and N than a basal medium with a small amount of S and more than 4% ethanol. The amount of BC produced in a shaking culture using the waste of beer fermentation broth was nearly the same as that of a basal medium. The production of BC decreased in a shear stress field in a jar fermenter although the conversion of cellulose producing ($Cel^+$) cells to non-cellulose producing ($Cel^-$) mutants was not severe. This study showed that the waste of beer fermentation broth is an inexpensive carbon, nitrogen source with ethanol and thus a worthy substitute for the conventional medium for BC production.

Molecular Identification and Technological Properties of Acetic Acid Bacteria Isolated from Malatya Apricot and Home-Made Fruit Vinegars

  • Buyukduman, Eda;Kirtil, Hatice Ebrar;Metin, Banu
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.81-88
    • /
    • 2022
  • Acetic acid bacteria (AAB) are versatile organisms involved in the production of variety of fermented foods, such as vinegar and kombucha, and products of biotechnological relevance, such as bacterial cellulose. In the present study, Malatya apricot, a variety with protected designation of origin (PDO), and vinegar samples produced using various fruits were used to isolate AAB. The 19 AAB isolates obtained were typed using (GTG)5 fingerprinting, and the ones selected were identified by sequencing either 16S rDNA alone or in combination with 16S-23S rRNA internal transcribed spacer region or ligA gene. While all apricot isolates (n = 10) were Gluconobacter cerinus, vinegar isolates (n = 9) were composed of Komagataeibacter saccharivorans, Acetobacter syzygii, and possible two new species of AAB, Komagataeibacter sp., and Gluconobacter sp. (GTG)5 fingerprinting showed the presence of several genotypes of G. cerinus in the apricot samples. Screening for some technologically relevant properties, including thermotolerance, ethanol tolerance, and cellulose production capability, showed that all Komagataeibacter and some Gluconobacter isolates could tolerate the temperature of 35℃, and that vinegar isolates could tolerate up to 8% ethanol. One isolate, Komagataeibacter sp. GUS3 produced bacterial cellulose (1 g/l) and has the potential to be used for cellulose production.

Medium Composition Affecting Production of Bacterial Cellulose by Gluconacetobacter hansenii PJK in an Agitated Culture (배지조성이 Gluconacetobacter hansenii PJK의 Bacterial Cellulose의 교반 생산에 미치는 영향)

  • Jung Jae Yong;Chang Ho Nam;Park Joong Kon
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.451-456
    • /
    • 2004
  • The effects of variation in composition of the medium on the conversion of Gluconacetobacter hanseii PJK cells producing cellulose ($Cel^+$) to non-cellulose producing ($Cel^-$) mutants and the production of bacterial cellulose (BC) in an agitated culture were investigated. The impeller speed greater than 500 rpm was required to decrease the population of $Cel^-$ mutants to minimum in a basal medium containing $1.5\%$ ethanol because the optimum impeller speed to minimize the population of $Cel^-$ mutants increased with the concentration of ethanol added to a basal medium. Ethanol fed-batch culture could not increase the BC production in an agitated culture unlike that of a shaking culture. The amount of BC produced in a basal medium containing $1\%$ ethanol was $39\%$ more than that of the same medium with $0.27\%\;Na_{2}HPO_4$. Increase in the concentration of acetic acid in a basal medium decreased the BC production. The pH control of the culture broth increased the cell mass in the batch culture and improved the production yield of water-soluble polysaccharide (WSPS), but did not affect the production of BC.

Recent Advances in Bacterial Cellulose Production

  • Shoda Makoto;Sugano Yasushi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Bacterial cellulose (BC), which is produced by some bacteria, has unique structural, functional, physical and chemical properties. Thus, the mass production of BC for industrial application has recently attracted considerable attention. To enhance BC production, two aspects have been considered, namely, the engineering and genetic viewpoints. The former includes the reactor design, nutrient selection, process control and optimization; and the latter the cloning of the BC synthesis gene, and the genetic modification of the speculated genes for higher BC production. In this review, recent advances in BC production from the two viewpoints mentioned above are described, mainly using the bacterium Gluconacetobacter xylinus.

Ex situ Coloration of Laccase-Entrapped Bacterial Cellulose with Natural Phenolic Dyes

  • Kim, Hyunjin;Song, Ji Eun;Kim, Hye Rim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.5
    • /
    • pp.866-880
    • /
    • 2021
  • This study aimed to ex situ colorize laccase-entrapped bacterial cellulose (BC) with natural phenolic dyes, namely,madder, turmeric, and cochineal, and to determine the effect of laccase entrapment on the dyeability of BC using color strength (K/S) analysis. Results showed that laccase entrapment improved the dyeability of BC and that pre-entrapment was the most effective method, compared with meta-entrapment and post-entrapment methods. In addition, surface characterizations confirmed the successful entrapment of laccase inside the BC nanostructure and retention of the cellulosic and crystalline structures of BC. The washing durability test confirmed that the K/S value of BC had improved after laccase entrapment. Furthermore, laccase-entrapped BC colorized with cochineal dye had the highest washing durability due to the high molecular weight of cochineal dyerelative to the other dyes. This study suggests a novel method for enhancing the dyeability and washing durability of BC colorized ex situ with natural phenolic dyes by laccase entrapment.

Production of Bacterial Cellulose by Acetobacter xylinum GS11. (Acetobacter xylinum GS11에 의한 미생물 셀룰로오스의 생산)

  • 고정연;신공식;이종수;최우영
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.57-62
    • /
    • 2002
  • Productivity of bacterial cellulose by Acetobacter xylinum GS11 was investigated in the several culture conditions. In various carbon sources, others with the exception of glucose were not found to be effective for cellulose production, and 2% was better in yield than other concentration of glucose. Yeast extract and soytone among several organic nitrogens were effective, but inorganic nitrogen sources tested were not efficient for cellulose production by A. xylinum GS11. The effects of various inorganic salts, amino acids and vitamins were also investigated: $MgSO_4$, phenylalanine and $\alpha$-tocopherol gave the cellulose yield of 1.5, 1.4 and 1.4 fold, respectively, compared with basal medium. In our experiment, cellulose production by A. xylinum GS11 added with 10% coconut milk and 0.5% lignosulfonate in basal medium, was the most efficient among the several material sources employed here, and these were 2.2 and 2.1 fold, respectively.

Strength and Healing Performance of the Mortar using Bacterial Pellet as a Self-Healing Material (박테리아 펠렛을 자기치유 소재로 사용한 모르타르의 강도 및 치유성능)

  • Jang, Indong;Son, Dasom;Ryu, Young-ung;Park, Woojun;Yi, Chongku
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.112-119
    • /
    • 2020
  • In this study, cellulose-based bacterial pellets was used for the self-healing concrete manufacturing. The pellet is composed of complex cultured bacterial spore powder, methyl cellulose, two kinds of PVA nutrients and water, and is extruded through a hydraulic press to have a shape of 2mm in diameter to 3 to 4mm in length. Cellulose pellets expand at neutral pH, release bacteria and nutrients, and do not react in a basic environment, increasing the long-term survival rate of bacteria in cement mortar. In addition, pellet self-healing performance of pellet mortar was significantly higher than that of control mortar. Cellulose-based pellets are a new type of bacterial carrier system that will help develop self-healing concrete in the future by improving and optimizing pellets.

Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties

  • Bang, Won Yeong;Kim, Dong Hyun;Kang, Mi Dan;Yang, Jungwoo;Huh, Taelin;Lim, Young Woon;Jung, Young Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1366-1372
    • /
    • 2021
  • Bacterial nanocellulose (BNC) is a biocompatible material with a lot of potential. To make BNC commercially feasible, improvements in its production and surface qualities must be made. Here, we investigated the in situ fermentation and generation of BNC by addition of different cellulosic substrates such as Avicel and carboxymethylcellulose (CMC) and using Komagataeibacter sp. SFCB22-18. The addition of cellulosic substrates improved BNC production by a maximum of about 5 times and slightly modified its structural properties. The morphological and structural properties of BNC were investigated by using Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy and X-ray diffraction. Furthermore, a type-A cellulose-binding protein derived from Clostridium thermocellum, CtCBD3, was used in a novel biological analytic approach to measure the surface crystallinity of the BNC. Because Avicel and CMC may adhere to microfibrils during BNC synthesis or crystallization, cellulose-binding protein could be a useful tool for identifying the crystalline properties of BNC with high sensitivity.

Microbial Production of Bacterial Cellulose Using Chestnut Shell Hydrolysates by Gluconacetobacter xylinus ATCC 53524

  • Jeongho Lee;Kang Hyun Lee;Seunghee Kim;Hyerim Son;Youngsang Chun;Chulhwan Park;Hah Young Yoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1479-1484
    • /
    • 2022
  • Bacterial cellulose (BC) is gaining attention as a carbon-neutral alternative to plant cellulose, and as a means to prevent deforestation and achieve a carbon-neutral society. However, the high cost of fermentation media for BC production is a barrier to its industrialization. In this study, chestnut shell (CS) hydrolysates were used as a carbon source for the BC-producing bacteria strain, Gluconacetobacter xylinus ATCC 53524. To evaluate the suitability of the CS hydrolysates, major inhibitors in the hydrolysates were analyzed, and BC production was profiled during fermentation. CS hydrolysates (40 g glucose/l) contained 1.9 g/l acetic acid when applied directly to the main medium. As a result, the BC concentration at 96 h using the control group and CS hydrolysates was 12.5 g/l and 16.7 g/l, respectively (1.3-fold improved). In addition, the surface morphology of BC derived from CS hydrolysates revealed more densely packed nanofibrils than the control group. In the microbial BC production using CS, the hydrolysate had no inhibitory effect during fermentation, suggesting it is a suitable feedstock for a sustainable and eco-friendly biorefinery. To the best of our knowledge, this is the first study to valorize CS by utilizing it in BC production.