Browse > Article
http://dx.doi.org/10.48022/mbl.2109.09017

Molecular Identification and Technological Properties of Acetic Acid Bacteria Isolated from Malatya Apricot and Home-Made Fruit Vinegars  

Buyukduman, Eda (Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University)
Kirtil, Hatice Ebrar (Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University)
Metin, Banu (Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University)
Publication Information
Microbiology and Biotechnology Letters / v.50, no.1, 2022 , pp. 81-88 More about this Journal
Abstract
Acetic acid bacteria (AAB) are versatile organisms involved in the production of variety of fermented foods, such as vinegar and kombucha, and products of biotechnological relevance, such as bacterial cellulose. In the present study, Malatya apricot, a variety with protected designation of origin (PDO), and vinegar samples produced using various fruits were used to isolate AAB. The 19 AAB isolates obtained were typed using (GTG)5 fingerprinting, and the ones selected were identified by sequencing either 16S rDNA alone or in combination with 16S-23S rRNA internal transcribed spacer region or ligA gene. While all apricot isolates (n = 10) were Gluconobacter cerinus, vinegar isolates (n = 9) were composed of Komagataeibacter saccharivorans, Acetobacter syzygii, and possible two new species of AAB, Komagataeibacter sp., and Gluconobacter sp. (GTG)5 fingerprinting showed the presence of several genotypes of G. cerinus in the apricot samples. Screening for some technologically relevant properties, including thermotolerance, ethanol tolerance, and cellulose production capability, showed that all Komagataeibacter and some Gluconobacter isolates could tolerate the temperature of 35℃, and that vinegar isolates could tolerate up to 8% ethanol. One isolate, Komagataeibacter sp. GUS3 produced bacterial cellulose (1 g/l) and has the potential to be used for cellulose production.
Keywords
Acetic acid bacteria (AAB); Malatya apricot; bacterial cellulose; Komagataeibacter; Gluconobacter cerinus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gullo M, Caggia C, De Vero L, Giudici P. 2006. Characterization of acetic acid bacteria in "traditional balsamic vinegar". Int. J. Food Microbiol. 106: 209-212.   DOI
2 Versalovic J, Schneider M, Bruijn FJ, Lupski JR. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell Biol. 5: 25-40.
3 Ruiz A, Poblet M, Mas A, Guillamon J. 2000. Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S-23S rDNA intergenic spacer. Int. J. Sys. Evol. 50: 1981-1987.   DOI
4 Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.   DOI
5 Chen Y, Bai Y, Li D, Wang C, Xu N, Hu Y. 2016. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei. World J. Microbiol. Biotechnol. 32: 14.   DOI
6 Hestrin S, Schramm M. 1954. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58: 345-352.   DOI
7 Yamada Y. 2016. Systematics of acetic acid bacteria, pp. 1-50. In Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds.), Acetic Acid Bacteria: Ecology and Physiology, Springer, Tokyo, Japan.
8 Trcek J. 2005. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene. Syst. Appl. Microbiol. 28: 735-745.   DOI
9 Aswini K, Gopal NO, Uthandi S. 2020. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnol. 20: 46.   DOI
10 Mateo E, Torija MJ, Mas A, Bartowsky EJ. 2014. Acetic acid bacteria isolated from grapes of South Australian vineyards. Int. J. Food Microbiol. 178: 98-106.   DOI
11 Navarro D, Mateo E, Torija M, Mas A. 2013. Acetic acid bacteria in grape must. Acetic Acid Bacteria 2: e4.
12 Kommanee J, Akaracharanya A, Tanasupawat S, Malimas T, Yukphan P, Nakagawa Y. et al. 2008. Identification of Gluconobacter strains isolated in Thailand based on 16S-23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses. Ann. Microbiol. 58: 741-747.   DOI
13 Akin EB, Karabulut I, Topcu A. 2008. Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chem. 107: 939-948.   DOI
14 Gullo M, Giudici P. 2008. Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection. Int. J. Food Microbiol. 125: 46-53.   DOI
15 Lisdiyanti P, Katsura K, Potacharoen W, Navarro RR, Yamada Y, Uchimura T, et al. 2003. Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines. Microbiol. Cult. Collect. 19: 91-99.
16 Lane DJ. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt E, Goodfellow M (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, New York.
17 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.   DOI
18 Gomes FP, Silva NHCS, Trovatti E, Serafim LS, Duarte MF, Silvestre AJD, et al. 2013. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenerg. 55: 205-211.   DOI
19 De Roos J, De Vuyst L. 2018. Acetic acid bacteria in fermented foods and beverages. Curr. Opin. Biotechnol. 49: 115-119.   DOI
20 Hasdemir M. 2020. Product Report Apricot, pp. 1- 47. Ministry of Agriculture and Forestry, Institute of Agricultural Economics and Policy Development, Ankara.
21 Valera MJ, Laich F, Gonzalez SS, Torija MJ, Mateo E, Mas A. 2011. Diversity of acetic acid bacteria present in healthy grapes from the Canary Islands. Int. J. Food Microbiol. 151: 105-112.   DOI
22 Saichana N, Matsushita K, Adachi O, Frebort I, Frebortova J. 2015. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnol. Adv. 33: 1260-1271.   DOI
23 Camu N, Gonzalez A, De Winter T, Van Schoor A, De Bruyne K, Vandamme P, et al. 2008. Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana. Appl. Environ. Microbiol. 74: 86-98.   DOI
24 Gonzalez A, Mas A. 2011. Differentiation of acetic acid bacteria based on sequence analysis of 16S-23S rRNA gene internal transcribed spacer sequences. Int. J. Food Microbiol. 147: 217-222.   DOI
25 Yamada Y, Akita M. 1984. An electrophoretic comparison of enzymes in strains of Gluconobacter species. J. Gen. Appl. Microbiol. 30: 115-126.   DOI
26 Gomes RJ, Borges M de F, Rosa M de F, Castro-Gomez RJH, Spinosa WA. 2018. Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Technol. Biotechnol. 56: 139-151.
27 Gullo M, La China S, Falcone PM, Giudici P. 2018. Biotechnological production of cellulose by acetic acid bacteria: Current state and perspectives. Appl. Microbiol. Biotechnol. 102: 6885-6898.   DOI
28 Huang CH, Lee FL, Liou JS. 2010. Rapid discrimination and classification of the Lactobacillus plantarum group based on a partial dnaK sequence and DNA fingerprinting techniques. Antonie Van Leeuwenhoek 97: 289-296.   DOI
29 Qin H, Sun Q, Pan X, Qiao Z, Yang H. 2016. Microbial diversity and biochemical analysis of Suanzhou: A traditional Chinese fermented cereal Gruel. Front. Microbiol. 25: 1311.
30 Visintin S, Alessandria V, Valente A, Dolci P, Cocolin L. 2016. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa. Int. J. Food Microbiol. 216: 69-78.   DOI
31 Saeki A, Theeragool G, Matsushita K, Toyama H, Lotong N, Adachi O. 1997. Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci. Biotechnol. Biochem. 61: 138-145.   DOI
32 Soemphol W, Deeraksa A, Matsutani M, Yakushi T, Toyama H, Adachi O, et al. 2011. Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU1100. Biosci. Biotechnol. Biochem. 75: 1921-1928.   DOI
33 Cleenwerck I, De Vos P, De Vuyst L. 2010. Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 60: 2277-2283.   DOI
34 Yuan Y, Feng F, Chen L, Yao Q, Chen K. 2013. Directional isolation of ethanol-tolerant acetic acid bacteria from industrial fermented vinegar. Eur. Food Res. Technol. 236: 573-578.   DOI
35 Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K. 2001. Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J. Gen. Appl. Microbiol. 47: 119-131.   DOI
36 Matsutani M, Matsumoto N, Hirakawa H, Shiwa Y, Yoshikawa H, Okamoto-Kainuma A, et al. 2020. Comparative genomic analysis of closely related Acetobacter pasteurianus strains provides evidence of horizontal gene transfer and reveals factors necessary for thermotolerance. J. Bacteriol. 202: e00553-19.
37 Ndoye B, Lebecque S, Dubois-Dauphin R, Tounkara L, Guiro AT, Kere C, et al. 2006. Thermoresistant properties of acetic acids bacteria isolated from tropical products of Sub-Saharan Africa and destined to industrial vinegar. Enzyme Microb. Technol. 39: 916-923.   DOI
38 Hidalgo C, Mateo E, Mas A, Torija MJ. 2012. Identification of yeast and acetic acid bacteria isolated from the fermentation and acetification of persimmon (Diospyros kaki). Food Microbiol. 30: 98-104.   DOI