Browse > Article

Recent Advances in Bacterial Cellulose Production  

Shoda Makoto (Chemical Resources Laboratory, Tokyo Institute of Technology)
Sugano Yasushi (Chemical Resources Laboratory, Tokyo Institute of Technology)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.10, no.1, 2005 , pp. 1-8 More about this Journal
Abstract
Bacterial cellulose (BC), which is produced by some bacteria, has unique structural, functional, physical and chemical properties. Thus, the mass production of BC for industrial application has recently attracted considerable attention. To enhance BC production, two aspects have been considered, namely, the engineering and genetic viewpoints. The former includes the reactor design, nutrient selection, process control and optimization; and the latter the cloning of the BC synthesis gene, and the genetic modification of the speculated genes for higher BC production. In this review, recent advances in BC production from the two viewpoints mentioned above are described, mainly using the bacterium Gluconacetobacter xylinus.
Keywords
bacterial cellulose; Gluconacetobacter xylinus;
Citations & Related Records

Times Cited By Web Of Science : 31  (Related Records In Web of Science)
Times Cited By SCOPUS : 30
연도 인용수 순위
1 Deinema, M. H. and L. Zevehvizen (1971) Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch. Microbiol. 78: 42-51   DOI   PUBMED
2 Romling, U. (2002) Molecular biology of cellulose production in bacteria. Res. Microbiol. 153: 205-212   DOI   PUBMED   ScienceOn
3 Swissa, M., Y. Aloni, H. Weinhouse, and M. Benziman (1980) Intermediatry steps in Acetobacter xylinum cellulose synthesis: Studies with whole cells and cell-free preparations of the wild type and a celluloseless mutant. J. Bacteriol. 143: 1142-1150
4 Saxena, I. M., K. Kudlicka, K. Okuda, and R. M. Brown Jr (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J. Bacteriol. 176: 5735-5752   DOI
5 Volman, G., P. Ohana, and M. Benziman (1995) Biochemistry and molecular biology of cellulose biosynthesis. Carbohydrates 20: 20-27
6 Nakai, T., A. Moriya, N. Tonouchi, T. Tsuchida, F. Yoshinaga, S. Horinouchi, Y. Sone, H. Mori, F. Sakai, and T. Hayashi (1998) Expression and characterization of sucrose synthase from mungbean seedlings in Escherichia coli. Gene 213: 93-100   DOI   PUBMED   ScienceOn
7 Nakai, T., Y. Nishiyama, S. Kuga, Y. Sugano, and M. Shoda (2002) ORF2 gene involves in the construction of high-order structure of bacterial cellulose. Biochem. Biophys. Res. Commun. 295: 458-462   DOI   ScienceOn
8 Brown R. M., Jr. H. Willson, and C. L. Richardson (1976) Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process. Proc. Natl. Acad. Sci. USA 73: 4565-4569   DOI   ScienceOn
9 Kimura, S., H. P. Chen, I. M. Saxena, R. M. Brown Jr., and T. Itoh (2001) Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum. J. Bacteriol. 183: 5668-5674   DOI   ScienceOn
10 Park, J. K., S. H. Hyun, and J. Y. Jung (2004) Conversion of G. hansenii PJK into non-cellulose-producing mutants according to the culture condition. Biotechnol. Bioprocess Eng. 9:383-388   DOI   ScienceOn
11 Naritomi, T., T. Kouda, H. Yano, and F. Yoshinaga (1998) Effect of lactate on bacterial cellulose production from continuous culture. J. Ferment. Bioeng. 85: 89-95   DOI   ScienceOn
12 Bae, S. and M. Shoda (2004) Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnol. Bioeng. in press   DOI   ScienceOn
13 Bae, S., Y. Sugano, and M. Shoda (2004) Improvement of bacterial cellulose production by addition of agar in a far fermentor. J. Biosci.Bioeng. 97: 33-38   DOI
14 Ishida, T., M. Mitarai, Y. Sugano, and M. Shoda (2003) Role of water-soluble polysaccharides in bacterial cellulose production. Biotechnol. Bioeng. 83: 474-478   DOI   ScienceOn
15 Onken, U. and P. Weiland (1983) Airlift Fermentors: Construction, Behavior, and Use. In Advances in Biotechnological Processes 1. pp. 67-95. Alan R. Liss, Inc., NY, USA
16 Chao, Y., T. Ishida, Y. Sugano, and M. Shoda (2000) Bacterial cellulose production by Acetobacter xylinum in a 50- L internal-loop airlift reactor. Biotechnol. Bioeng. 68: 345- 352   DOI   ScienceOn
17 Solano, C., B. Garcia, J. Valle, C. Berasain, J-M. Ghigo, C. Gamazao, and I. Lasa (2002) Genetic analysis of Salmonella enteritidis biofilm formation: Critical role of cellulose. Mol. Microbiol. 43: 793-808   DOI   ScienceOn
18 Bae, S., Y. Sugano, K. Ohi, and M. Shoda (2004) Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR2001. Appl. Microbiol. Biotechnol. 65: 315-322   DOI   PUBMED
19 Wulf, P. D., K. Joris, and E. J. Vandamme (1996) Improved cellulose formation by an Acetobacter xylinum mutant limited in (keto)gluconate synthesis. J. Chem. Tech. Biotechnol. 67: 376-380   DOI   ScienceOn
20 Ishida, T, Y. Sugano, T. Nakai, and M. Shoda (2002) Effects of acetan on production of bacterial cellulose by Acetobacter xylinum. Biosci. Biotechnol. Biochem. 66: 1677- 1681   DOI   ScienceOn
21 Zogaj, X., M. Nimitz, M. Rohde, W. Bokranz, and U. Romling (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39: 1452-1463   DOI   ScienceOn
22 Bae, S. and M. Shoda (2004) Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl. Microbiol. Biotechnol. in press   DOI   PUBMED
23 Fontana, J. D., A. M. Souza, C. K. Fontana, I. L. Torrianio, J. C. Moreschi, B. J. Galloyi, S. J. Souza, G. P. Narcisco, J. A. Bichara, and L. F. X. Farah (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl. Biochem. Biotechnol. 24/25: 253-264   DOI   ScienceOn
24 Toyosaki, H., T. Naritomi, A. Seto, M. Matsuoka, T. Tsuchida, and F. Yoshinaga (1995) Screening of bacterial cellulose- producing Acetobacter strains suitable for agitated culture. Biosci. Biotech. Biochem. 59: 1498-1452   DOI
25 Son, H. J., M. S. Heo, Y. G. Kim, and S. J. Lee (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol. Appl. Biochem. 33: 1-5   DOI   ScienceOn
26 Embuscado, M. E., J. S. Marks, and J. N. BeMiller (1994) Bacterial cellulose. II. Optimization of cellulose production by Acetobacter xylinum through response surface methodology. Food Hydrocoll. 8: 419-430   DOI   ScienceOn
27 Ross, P., R. Mayer and M. Benzimann (1991) Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55: 35-58
28 Nishi, Y., M. Uryu, S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, and S. Mitsuhashi (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. J. Mater. Sci. 25: 2997-3001   DOI
29 Tal, R., H. C. Wong, R. Calhoon, D. Gelfand, A. L. Fear, G. Volman, R. Mayer, P. Ross, D. Amikam, H. Weinhouse, A. Cohen, S. Sapir, P. Ohana, and M. Benziman (1998) Three cdg operons control cellular turnover of cyclic di- GMP in Acetobacter xylinum: Genetic organization and occurrence of conserved domains in isoenzymes. J. Bacteriol. 180: 4416-4425
30 Hestrin, S. and M. Schramm (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58: 345-352   DOI
31 Chao, Y. (2002) Characteristics of Bacterial Cellulose Production by Acetobacter xylinum by an Airlift Reactor. Ph.D. Thesis. Tokyo Institute of Technology, Tokyo, Japan
32 Wong, H. C., A. L. Fear, R. D. Calhoon, G. H. Eichinger, R. Mayer, D. Amikam, M. Benziman, D. H. Gelfand, J. H. Meade, A. W. Emerick, R. Bruner, A. Ben-Bassat, and R. Tal (1990) Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc. Natl. Acad. Sci. USA 87: 8130-8134   DOI
33 Kouda, T., H. Yano, F. Yoshinaga, M. Kaminoyama, and M. Kamiwano (1996) Characterization of non-Newtonian behavior during mixing of bacterial cellulose in bioreactor. J. Ferment. Bioeng. 82: 382-386   DOI   ScienceOn
34 Yoshinaga, F., N. Tonouchi, and K. Watanabe (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci. Biotech. Biochem. 61: 219-224   DOI   ScienceOn
35 Bae, S. and M. Shoda (2004) Bacterial cellulose production by fedbatch fermentation in molasses medium. Biotechnol. Prog. 20: 1366-1371   DOI   ScienceOn
36 Chao, Y., Y. Sugano, and M. Shoda (2001) Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor. Appl. Microbiol. Biotechnol. 55: 673-679   DOI   ScienceOn
37 Hwang, J. W., Y. K. Yang, J. K. Hwang, Y. R. Ryun, and Y. S. Kim (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J. Biosci. Bioeng. 88: 183-188   DOI   ScienceOn
38 Galas, E, A. Krystynowicz, L. Tarabasz-Szymanska, T. Pankiewicz, and M. Rzyska (1999) Optimization of the production of bacterial cellulose using multivariable linear regression analysis. Acta Biotechnol. 19: 251-260   DOI
39 Chao, Y., Y. Sugano, T. Kouda, F. Yoshinaga, and M. Shoda (1997) Production of bacterial cellulose by Acetobacter xylinum with an air-lift reactor. Biotechnol. Tech. 11: 829-832   DOI   ScienceOn
40 Park, J. K., J. Y. Jung, and Y. H. Park (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol. Letts. 25: 2055-2059   DOI   ScienceOn
41 Zaar, K. (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J. Cell. Biol. 80: 773-777   DOI   PUBMED   ScienceOn
42 Standal, R., T. G. Inversen, D. H. Coucheron, E. Fjærvik, J. Blatny, and S. Valla (1994) A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon. J. Bacteriol. 176: 665-672   DOI
43 Noro, N., Y. Sugano, and M. Shoda (2004) Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Appl. Microbiol. Biotechnol. 64: 199-205   DOI   ScienceOn
44 Ross, P., H. Weinhouse, Y. Aloni, D. Michaeli, P. Weinberger- Ohana, R. Mayer, S. Braun, E. de Vroom, G. van der Marel, J. H. van Boom, and M. Benziman (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325: 279-281   DOI   PUBMED
45 Gawande, B. N. and A. Y. Patkar (1999) Application of factorial designs for optimization of cyclodextrin glycosyltransferase production from Klebsiella pneumoniae AS-22. Biotechnol. Bioeng. 64: 168-173   DOI   ScienceOn
46 Box, G. E. P. and D. W. Behnken (1960) Some new three level designs for the study of quantitative variables. Technometrics 2: 455-475   DOI   ScienceOn
47 Joseph, G., G. E. Rowe, A. Margaritis, and W. Wan (2003) Effects of polysaccharide-co-acrylic acid on cellulose production by Acetobacter xylinum. J. Chem. Technol. Biotechnol. 78: 964-970   DOI   ScienceOn
48 Chao, Y., M. Mitarai, Y. Sugano, and M. Shoda (2001) Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor. Biotechnol. Prog. 17: 781-785   DOI   ScienceOn
49 Krystynowicz, A., W. Czaja, A. Wiktorowska-Jezierska, M. Goncalves-Miskiewicz, M. Turkiewicz, and S. Bielecki (2002) Factors affecting the yield and properties of bacterial cellulose. J. Indust. Microbiol. Biotechnol. 29: 189-195   DOI   ScienceOn
50 Delmer, D. P. (1987) Cellulose biosynthesis. Annu. Rev. Plant Physiol. 38: 259-290   DOI
51 Kouda, T., H. Yano, and F. Yoshinaga (1997) Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture. J. Ferment. Bioeng. 83: 371- 376   DOI   ScienceOn
52 Vandamme, E. J., S. D. Beats, A. Vanbalen, K. Joris, and P. D. Wulf (1998) Improved production of bacterial cellulose and its application potential. Polymer Degrad. Stabil. 59: 93-99   DOI   ScienceOn
53 Francis, F., A. Sabu, K. M. Nampoothiri, S. Ramachandran, S. Ghosh,G. Szakacs, and A. Pandey (2003) Use of response surface methodology for optimizing process parameters for the production of $\alpha$-amylase by Aspergillus oryzae. Biochem. Eng. J. 15: 107-115   DOI   ScienceOn
54 Box, G. E. P. and J. S. Hunter (1957) Multi-factorial designs for exploring response surfaces. Ann Math Stat. 28: 195-241   DOI   ScienceOn
55 Siegel, M. H., M. Hallaie, and J. C. Merchunk (1988) Airlift Reactors: Design, Operation, and Applications. In Upstream Process: Equipment and Techniques. pp. 79-124. Alan R. Liss, Inc., NY, USA
56 Serafica, G., R. Mormino, and H. Bungay (2002) Inclusion of solid particles in bacterial cellulose. Appl. Microbiol Biotechnol. 58: 756-760   DOI   ScienceOn