Browse > Article
http://dx.doi.org/10.5850/JKSCT.2021.45.5.866

Ex situ Coloration of Laccase-Entrapped Bacterial Cellulose with Natural Phenolic Dyes  

Kim, Hyunjin (Dept. of Clothing and Textiles, Sookmyung Women's University)
Song, Ji Eun (Dept. of Fashion and Clothing, Seowon University)
Kim, Hye Rim (Dept. of Clothing and Textiles, Sookmyung Women's University)
Publication Information
Journal of the Korean Society of Clothing and Textiles / v.45, no.5, 2021 , pp. 866-880 More about this Journal
Abstract
This study aimed to ex situ colorize laccase-entrapped bacterial cellulose (BC) with natural phenolic dyes, namely,madder, turmeric, and cochineal, and to determine the effect of laccase entrapment on the dyeability of BC using color strength (K/S) analysis. Results showed that laccase entrapment improved the dyeability of BC and that pre-entrapment was the most effective method, compared with meta-entrapment and post-entrapment methods. In addition, surface characterizations confirmed the successful entrapment of laccase inside the BC nanostructure and retention of the cellulosic and crystalline structures of BC. The washing durability test confirmed that the K/S value of BC had improved after laccase entrapment. Furthermore, laccase-entrapped BC colorized with cochineal dye had the highest washing durability due to the high molecular weight of cochineal dyerelative to the other dyes. This study suggests a novel method for enhancing the dyeability and washing durability of BC colorized ex situ with natural phenolic dyes by laccase entrapment.
Keywords
Bacterial cellulose; Coloration; Laccase; Entrapment; Natural phenolic dye;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akira, K., Hiroyasu, K., & Norikazu, I. (1990). The effect of a direct dye on the formation process of the structure of bacterial cellulose. Chemistry Letters, 19(6), 949-952. doi:10.1246/cl.1990.949   DOI
2 Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro., A. M. (2019). Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3:7. doi:10.3389/fsufs.2019.00007   DOI
3 Chan, C. K., Shin, J., & Jiang, S. X. K. (2018). Development of tailor-shaped bacterial cellulose textile cultivation techniques for zero-waste design. Clothing and Textiles Research Journal, 36(1), 33-44. doi:10.1177/0887302X17737177   DOI
4 Chen, S., Zou, Y., Yan, Z., Shen, W., Shi, S., Zhang, X., & Wang, H. (2009). Carboxymethylated-bacterial cellulose for copper and lead ion removal. Journal of Hazardous Materials, 161(2-3), 1355-1359. doi:10.1016/j.jhazmat.2008.04.098   DOI
5 Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., ... Cai, Y. (2020). Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal, 122:109365. doi:10.1016/j.eurpolymj.2019.109365   DOI
6 Sajjad, W., He, F., Ullah, M. W., Ikram, M., Shah, S. M., Khan, R., ... Wahid, F. (2020). Fabrication of bacterial cellulosecurcumin nanocomposite as a novel dressing for partial thickness skin burn. Frontiers in Bioengineering and Biotechnology, 8:553037. doi:10.3389/fbioe.2020.553037   DOI
7 Saputri, Y., Yusriana, & Munawar, A. A. (2019). Infrared spectroscopic features of turmeric powder. IOP Conference Series: Earth and Environmental Science, 365:012051. doi:10.1088/1755-1315/365/1/012051   DOI
8 Shams-Nateri, A. (2011). Reusing wastewater of madder natural dye for wool dyeing. Journal of Cleaner Production, 19(6-7), 775-781. doi:10.1016/j.jclepro.2010.12.018   DOI
9 Abol-Fotouh, D., Hassan, M. A., Shokry, H., Roig, A., Azab, M. S., & Kashyout, A. E.-H. B. (2020). Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Scientific Reports, 10(1):3491. doi:10.1038/s41598-020-60315-9   DOI
10 Bhatti, I. A., Adeel, S., Jamal, M. A., Safdar, M., & Abbas, M. (2010). Influence of gamma radiation on the colour strength and fastness properties of fabric using turmeric (Curcuma longa L.) as natural dye. Radiation Physics and Chemistry, 79(5), 622-625. doi:10.1016/j.radphyschem.2009.12.006   DOI
11 Dhar, P., Etula, J., & Bankar, S. B. (2019). In situ bioprocessing of bacterial cellulose with graphene: Percolation network formation, kinetic analysis with physicochemical and structural properties assessment. ACS Applied Bio Materials, 2(9), 4052-4066. doi:10.1021/acsabm.9b00581   DOI
12 Domskiene, J., Sederaviciute, F., & Simonaityte, J. (2019). Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology, 31(5), 644-652. doi:10.1108/IJCST-02-2019-0010   DOI
13 Adibzadeh, P., & Motakef-Kazemi, N. (2018). Preparation and characterization of curcumin-silver nanoparticle and evaluation of the effect of poly ethylene glycol and temperature. Journal of Nanoanalysis, 5(3), 156-162. doi:10.22034/jna.2018.543607   DOI
14 Song, J. E., Cavaco-Paulo, A., Silva, C., & Kim, H. R. (2020). Improvement of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. Textile Research Journal, 90(2), 166-178. doi:10.1177/0040517519862886   DOI
15 Andrade, F. K., Morais, J. P. S., Muniz, C. R., Nascimento, J. H. O., Vieira, R. S., Gama, F. M. P., & Rosa, M. F. (2019). Stable microfluidized bacterial cellulose suspension. Cellulose, 26(10), 5851-5864. doi:10.1007/s10570-019-02512-y   DOI
16 Bai, R., Yu, Y., Wang, Q., Yuan, J., & Fan, X. (2016). Effect of laccase on dyeing properties of polyphenol-based natural dye for wool fabric. Fibers and Polymers, 17(10), 1613-1620. doi:10.1007/s12221-016-5598-5   DOI
17 Bebic, J., Banjanac, K., Rusmirovic, J., Corovic, M., Milivojevic, A., Simovic, M., ... Bezbradica, D. (2020). Amino-modified kraft lignin microspheres as a support for enzyme immobilization. RSC Advances, 10(36), 21495-21508. doi:10.1039/d0ra03439h   DOI
18 Blanquez, A., Ball, A. S., Gonzalez-Perez, J. A., Jimenez-Morillo, N. T., Gonzalez-Vila, F., Arias, M. E., & Hernandez, M. (2017). Laccase SilA from Streptomyces ipomoeae CECT 3341, a key enzyme for the degradation of lignin from agricultural residues? PLoS ONE, 12(11):e0187649. doi:10.1371/journal.pone.0187649   DOI
19 Darne, P. A., Mehta, M. R., Agawane, S. B., & Prabhune, A. A. (2016). Bioavailability studies of curcumin-sophorolipid nano-conjugates in the aqueous phase: role in the synthesis of uniform gold nanoparticles. RSC Advances, 6(72), 68504-68514. doi:10.1039/c6ra13469f   DOI
20 de S. Costa, A. F., de Amorim, J. D. P., Almeida, F. C. G., de Lima, I. D., de Paiva, S. C., Rocha, M. A. V., ... Sarubbo, L. A. (2019). Dyeing of bacterial cellulose films using plant-based natural dyes. International Journal of Biological Macromolecules, 121, 580-587. doi:10.1016/j.ijbiomac.2018.10.066   DOI
21 Jang, W. D., Hwang, J. H., Kim, H. U., Ryu, J. Y., & Lee, S. Y. (2017). Bacterial cellulose as an example product for sustainable production and consumption. Microbial Biotechnology, 10(5), 1181-1185. doi:10.1111/1751-7915.12744   DOI
22 Antunes, V., Candeias, A., Mirao, J., Carvalho, M. L., Serrao, V., Dias, C. B., ... Manso, M. (2018). On the origin of Goa Cathedral former altarpiece: Material and technical assessment to the work of Garcia Fernandes, Portuguese painter from 16th century Lisbon workshop. Microchemical Journal, 138, 226-237. doi:10.1016/j.microc.2018.01.018   DOI
23 Fernandes, M., Gama, M., Dourado, F., & Souto, A. P. (2019). Development of novel bacterial cellulose composites for the textile and shoe industry. Microbial Biotechnology, 12(4), 650-661. doi:10.1111/1751-7915.13387   DOI
24 Gautam, C., Yadav, A. K., & Singh, A. K. (2012). A review on infrared spectroscopy of borate glasses with effects of different additives. International Scholarly Research Network, 2012:428497. doi:10.5402/2012/428497   DOI
25 Goudarzi, M., Mir, N., Mousavi-Kamazani, M., Bagheri, S., & Salavati-Niasari, M. (2016). Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Scientific Reports, 6(1):32539. doi:10.1038/srep32539   DOI
26 Han, J., Shim, E., & Kim, H. R. (2019). Effects of cultivation, washing, and bleaching conditions on bacterial cellulose fabric production. Textile Research Journal, 89(6), 1094-1104. doi:10.1177/0040517518763989   DOI
27 Kim, H., Yi, J.-Y., Kim, B.-G., Song, J. E., Jeong, H.-J., & Kim, H. R. (2020). Development of cellulose-based conductive fabrics with electrical conductivity and flexibility. PLoS ONE, 15(6):e0233952. doi:10.1371/journal.pone.0233952   DOI
28 Kamel, M. M., El-Shishtawy, R. M., Yussef, B. M., & Mashaly, H. (2005). Ultrasonic assisted dyeing: III. Dyeing of wool with lac as a natural dye. Dyes and Pigments, 65(2), 103-110. doi:10.1016/j.dyepig.2004.06.003   DOI
29 Maamoun, D., Osman, H., & Nassar, S. H. (2014). Cotton/wool printing with natural dyes nano-particles. Journal of International Environmental Application and Science, 9(1), 90-99.
30 Kim, H., Song, J. E., Silva, C., & Kim, H. R. (2020). Production of conductive bacterial cellulose-polyaniline membranes in the presence of metal salts. Textile Research Journal, 90(13-14), 1517-1526. doi:10.1177/0040517519893717   DOI
31 Kim, S., Lee, H., Kim, J., Oliveira, F., Souto, P., Kim, H., & Nakamatsu, J. (2018). Laccase-mediated grafting of polyphenols onto cationized cotton fibers to impart UV protection and antioxidant activities. Journal of Applied Polymer Science, 135(6):45801. doi:10.1002/app.45801   DOI
32 Shim, E., & Kim, H. R. (2019). Coloration of bacterial cellulose using in situ and ex situ methods. Textile Research Journal, 89(7), 1297-1310. doi:10.1177/0040517518770673   DOI
33 Kolodziejczak-Radzimska, A., Ciesielczyk, F., & Jesionowski, T. (2019). A novel biocatalytic system obtained via immobilization of aminoacylase onto sol-gel derived ZrO2.SiO2 binary oxide material: physicochemical characteristic and catalytic activity study. Adsorption, 25(4), 855-864. doi:10.1007/s10450-019-00085-7   DOI
34 Kus, P. M., Congiu, F., Teper, D., Sroka, Z., Jerkovic, I., & Tuberoso, C. I. G. (2014). Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT - Food Science and Technology, 55(1), 124-130. doi:10.1016/j.lwt.2013.09.016   DOI
35 Sheu, F., Wang, C. L., & Shyu, Y. T. (2008). Fermentation of Monascus purpureus on bacterial cellulose-nata and the color stability of Monascus-nata complex. Journal of Food Science, 65(2), 342-345. doi:10.1111/j.1365-2621.2000.tb16004.x   DOI
36 Sindhu, K., Rajaram, A., Sreeram, K. J., & Rajaram, R. (2014). Curcumin conjugated gold nanoparticle synthesis and its biocompatibility. RSC Advances, 4(4), 1808-1818. doi:10.1039/c3ra45345f   DOI
37 Sivakumar, V., Vijaeeswarri, J., & Anna, J. L. (2011). Effective natural dye extraction from different plant materials using ultrasound. Industrial Crops and Products, 33(1), 116-122. doi:10.1016/j.indcrop.2010.09.007   DOI
38 Song, J. E., Silva, C., Cavaco-Paulo, A. M. & Kim, H. R. (2019). Functionalization of bacterial cellulose nonwoven by poly (fluorophenol) to improve its hydrophobicity and durability. Frontiers in Bioengineering and Biotechnology, 7:332. doi:10.3389/fbioe.2019.00332   DOI
39 Iqbal, H. M. N., Kyazze, G., Locke, I. C., Tron, T., & Keshavarz, T. (2015). Development of novel antibacterial active, HaCaT biocompatible and biodegradable CA-g-P(3HB)-EC biocomposites with caffeic acid as a functional entity. eXPRESS Polymer Letters, 9(9), 764-772. doi:10.3144/expresspolymlett.2015.72   DOI
40 International Organization for Standardization. (2013, March). ISO 105-E01:2013 Textiles - Tests for colour fastness - Part E01: Colour fastness to water. ISO. Retrieved from https://www.iso.org/standard/57962.html
41 Legan, L., Retko, K., & Ropret, P. (2016). Vibrational spectroscopic study on degradation of alizarin carmine. Microchemical Journal, 127, 36-45. doi:10.1016/j.microc.2016.02.002   DOI
42 Osman Adam, O. A., Abadi, R. S. M., & Ayoub, S. M. H. (2020). Antioxidant activity, total phenolic and flavonoid contents and cytotoxic activity of Euphorbia aegyptiaca. Journal of Drug Delivery and Therapeutics, 10(2), 37-41. doi:10.22270/jddt.v10i2.3911   DOI
43 Li, S., Huang, D., Zhang, B., Xu, X., Wang, M., Yang, G., & Shen, Y. (2014). Flexible supercapacitors based on bacterial cellulose paper electrodes. Advanced Energy Materials, 4(10):1301655. doi:10.1002/aenm.201301655   DOI
44 Song, J. E., Su, J., Loureiro, A., Martins, M., Cavaco-Paulo, A., Kim, H. R., & Silva, C. (2017). Ultrasound-assisted swelling of bacterial cellulose. Engineering in Life Sciences, 17(10), 1108-1117. doi:10.1002/elsc.201700085   DOI
45 Lin, D., Liu, Z., Shen, R., Chen, S., & Yang, X. (2020). Bacterial cellulose in food industry: Current research and future prospects. International Journal of Biological Macromolecules, 158, 1007-1019. doi:10.1016/j.ijbiomac.2020.04.230   DOI
46 Lopes, T. D., Riegel-Vidotti, I. C., Grein, A., Tischer, C. A., Faria-Tischer, P. C. d. S. (2014). Bacterial cellulose and hyaluronic acid hybrid membranes: Production and characterization. International Journal of Biological Macromolecules, 67, 401-408. doi:10.1016/j.ijbiomac.2014.03.047   DOI
47 Ma, L., Bi, Z., Xue, Y., Zhang, W., Huang, Q., Zhang, L., & Huang, Y. (2020). Bacterial cellulose: an encouraging ecofriendly nano-candidate for energy storage and energy conversion. Journal of Materials Chemistry A, 8(12), 5812-5842. doi:10.1039/c9ta12536a   DOI
48 Maryam, & Rahmad, D. (2019). Synthesis of nano bacterial cellulose using acid hydrolysis-ultrasonication treatment. Journal of Physics: Conference Series, 1185:012028. doi:10.1088/1742-6596/1185/1/012028   DOI
49 Miyamoto, H., Tsuduki, M., Ago, M., Yamane, C., Ueda, M., & Okajima, K. (2014). Influence of dyestuffs on the crystallinity of a bacterial cellulose and a regenerated cellulose. Textile Research Journal, 84(11), 1147-1158. doi:10.1177/0040517513517960   DOI
50 Pacheco, G., de Mello, C. V., Chiari-Andreo, B. G., Isaac, V. L. B., Ribeiro, S. J. L., Pecoraro, E., & Trovatti, E. (2018). Bacterial cellulose skin masks-Properties and sensory tests. Journal of Cosmetic Dermatology, 17(5), 840-847. doi:10.1111/jocd.12441   DOI
51 Ul-Islam, M., Shah, N., Ha, J. H., & Park, J. K. (2011). Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean Journal of Chemical Engineering, 28(8):1736. doi:10.1007/s11814-011-0042-4   DOI
52 Song, J. E., Su, J., Noro, J., Cavaco-Paulo, A., Silva, C., & Kim, H. R. (2018). Bio-coloration of bacterial cellulose assisted by immobilized laccase. AMB Express, 8:19. doi:10.1186/s13568-018-0552-0   DOI
53 Tayyab, N., Sayed, R. Y., Faisal, R., Wang, W., Javeed, A. A., Mudassar, A., ... Muhammad, A. (2020). Dyeing and colour fastness of natural dye from Citrus aurantium on Lyocell fabric. Industria Textila, 71(4), 350-356. doi:10.35530/IT.071.04.1686   DOI
54 Torres, F. G., Arroyo, J. J., & Troncoso, O. P. (2019). Bacterial cellulose nanocomposites: An all-nano type of material. Materials Science and Engineering: C, 98, 1277-1293. doi:10.1016/j.msec.2019.01.064   DOI
55 Ul-Islam, M., Subhan, F., Islam, S. U., Khan, S., Shah, N., Manan, S., ... Yang, G. (2019). Development of three-dimensional bacterial cellulose/chitosan scaffolds: Analysis of cell-scaffold interaction for potential application in the diagnosis of ovarian cancer. International Journal of Biological Macromolecules, 137, 1050-1059. doi:10.1016/j.ijbiomac.2019.07.050   DOI
56 Velmurugan, P., TamilSelvi, A., Lakshmanaperumalsamy, P., Park, J., & Oh, B.-T. (2013). The use of cochineal and Monascus purpureus as dyes for cotton fabric. Coloration Technology, 129(4), 246-251. doi:10.1111/cote.12032   DOI
57 Wu, Z.-Y., Liang, H.-W., Li, C., Hu, B.-C., Xu, X.-X., Wang, Q., ... Yu, S.-H. (2014). Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Research, 7(12), 1861-1872. doi:10.1007/s12274-014-0546-4   DOI
58 Ochaikul, D., Chotirittikrai, K., Chantra, J., & Wutigornsombatkul, S. (2006). Studies on fermentation of Monascus purpureus TISTR 3090 with bacterial cellulose from Acetobacter xylinum TISTR 967. KMITL Science and Technology Journal, 6(1), 13-17.