Browse > Article
http://dx.doi.org/10.4014/jmb.2106.06068

Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties  

Bang, Won Yeong (School of Food Science and Biotechnology, Kyungpook National University)
Kim, Dong Hyun (Department of Biotechnology, Graduate School, Korea University)
Kang, Mi Dan (School of Food Science and Biotechnology, Kyungpook National University)
Yang, Jungwoo (Ildong Bioscience)
Huh, Taelin (School of Life Science and Biotechnology, Kyungpook National University)
Lim, Young Woon (School of Biological Sciences and Institution of Microbiology, Seoul National University)
Jung, Young Hoon (School of Food Science and Biotechnology, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.10, 2021 , pp. 1366-1372 More about this Journal
Abstract
Bacterial nanocellulose (BNC) is a biocompatible material with a lot of potential. To make BNC commercially feasible, improvements in its production and surface qualities must be made. Here, we investigated the in situ fermentation and generation of BNC by addition of different cellulosic substrates such as Avicel and carboxymethylcellulose (CMC) and using Komagataeibacter sp. SFCB22-18. The addition of cellulosic substrates improved BNC production by a maximum of about 5 times and slightly modified its structural properties. The morphological and structural properties of BNC were investigated by using Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy and X-ray diffraction. Furthermore, a type-A cellulose-binding protein derived from Clostridium thermocellum, CtCBD3, was used in a novel biological analytic approach to measure the surface crystallinity of the BNC. Because Avicel and CMC may adhere to microfibrils during BNC synthesis or crystallization, cellulose-binding protein could be a useful tool for identifying the crystalline properties of BNC with high sensitivity.
Keywords
Bacterial nanocellulose; Komagataeibacter; cellulose-binding protein; Avicel; carboxymethyl cellulose; fermentation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lin SP, Liu CT, Hsu KD, Hung YT, Shih TY, Cheng KC. 2016. Production of bacterial cellulose with various additives in a PCS rotating disk bioreactor and its material property analysis. Cellulose 23: 367-377.   DOI
2 Cheng KC, Catchmark JM, Demirci A. 2011. Effects of CMC Addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12: 730-736.   DOI
3 Ishida T, Mitarai M, Sugano Y, Shoda M. 2003. Role of water-soluble polysaccharides in bacterial cellulose production. Biotechnol. Bioeng. 83: 474-478.   DOI
4 Gao S, You C, Renneckar S, Bao J, Zhang YHP. 2014. New insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFP. Biotechnol. Biofuels 7: 24.   DOI
5 Haigler CH, Brown RM, Benziman M. 1980. Calcofluor white ST alters the in vivo assembly of cellulose microfibrils. Science 210: 903-906.   DOI
6 Zhou L, Sun D, Hu L, Li Y, Yang J. 2007. Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J. Ind. Microbiol. Biotechnol. 34: 483.   DOI
7 Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40: 3941-3994.   DOI
8 Yamamoto H, Horii F, Hirai A. 1996. In situ crystallization of bacterial cellulose II. Influences of different polymeric additives on the formation of celluloses I α and I β at the early stage of incubation. Cellulose 3: 229-242.   DOI
9 Fengel D, Ludwig M. 1991. Possibilities and limits of the FTIR spectroscopy for the characterization of cellulose. Pt. 1: Comparison of various cellulose fibres and bacteria cellulose, Papier (Germany, FR)
10 Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3: 10.   DOI
11 Ling Z, Chen S, Zhang X, Takabe K, Xu F. 2017. Unraveling variations of crystalline cellulose induced by ionic liquid and their effects on enzymatic hydrolysis. Sci. Rep. 7: 10230.   DOI
12 Niamsap T, Lam NT, Sukyai P. 2019. Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals. Carbohydr. Polym. 205: 159-166.   DOI
13 Gao H, Sun Q, Han Z, Li J, Liao B, Hu L, et al. 2020. Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions. Carbohydr. Polym. 227: 115323.   DOI
14 Mokhena T John M. 2020. Cellulose nanomaterials: new generation materials for solving global issues. Cellulose 27: 1149-1194.   DOI
15 Oprea M, Voicu SI. 2020. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr. Polym. 247: 116683.   DOI
16 Nguyen VT, Flanagan B, Gidley MJ, Dykes GA. 2008. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr. Microbiol. 57: 449-453.   DOI
17 Du R, Zhao F, Peng Q, Zhou Z, Han Y. 2018. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydr. Polym. 194: 200-207.   DOI
18 Okiyama A, Motoki M, Yamanaka S. 1992. Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocoll 6: 479-487.   DOI
19 Park MS, Jung YH, Oh SY, Kim MJ, Bang WY, Lim YW. 2019. Cellulosic nanomaterial production via fermentation by Komagataeibacter sp. SFCB22-18 isolated from ripened persimmons. J. Microbiol. Biotechnol. 29: 617-624.   DOI
20 Dayal MS, Catchmark JM. 2016. Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr. Polym. 144: 447-453.   DOI
21 Lee HC, Zhao X. 1999. Effects of mixing conditions on the production of microbial cellulose by Acetobacter xylinum. Biotechnol. Bioprocess Eng. 4: 41-45.   DOI
22 Kljun A, Benians TA, Goubet F, Meulewaeter F, Knox JP, Blackburn RS. 2011. Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes. Biomacromolecules 12: 4121-4126.   DOI
23 Cheng KC, Catchmark JM, Demirci A. 2009. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16: 1033-1045.   DOI
24 Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan D, Brittberg M, et al. 2005. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26: 419-431.   DOI
25 Kim J, Cai Z, Chen Y. 2010. Biocompatible bacterial cellulose composites for biomedical application J. Nanotechnol. Eng. Med. 1: 011006.   DOI
26 Chen HH, Chen LC, Huang HC, Lin SB (2011) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose 18: 1573-1583.   DOI
27 Gea S, Bilotti E, Reynolds CT, Soykeabkeaw N, Peijs T. 2010. Bacterial cellulose-poly (vinyl alcohol) nanocomposites prepared by an in-situ process. Mater. Lett. 64: 901-904.   DOI
28 Cheng KC, Catchmark JM, Demirci A. 2009. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16: 1033-1045.   DOI
29 Foner H, Adan N. 1983. The characterization of papers by X-ray diffraction (XRD): measurement of cellulose crystallinity and determination of mineral composition. J. Forensic. Sci. Soc. 23: 313-321.   DOI
30 Yamada Y, Hosono R, Lisdyanti P, Widyastuti Y, Saono S, Uchimura T, et al. 1999. Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. J. Gen. Appl. Microbiol. 45: 23-28.   DOI
31 Liu H, Cheng G, Kent M, Stavila V, Simmons BA, Sale KL, et al. 2012. Simulations reveal conformational changes of methylhydroxyl groups during dissolution of cellulose Iβ in ionic liquid 1-ethyl-3-methylimidazolium acetate. J. Phys. Chem. B 116: 8131-8138.   DOI
32 Aissa K, Novy V, Nielsen F, Saddler J. 2018. Use of carbohydrate binding modules to elucidate the relationship between fibrillation, hydrolyzability, and accessibility of cellulosic substrates. ACS Sustain Chem. Eng. 7: 1113-1119.
33 Calvino C, Macke N, Kato R, Rowan SJ. 2020. Development, processing and applications of bio-sourced cellulose nanocrystal composites. Prog. Polym. Sci. 103: 101221.   DOI
34 Novy V, Aissa K, Nielsen F, Straus SK, Ciesielski P, Hunt CG, et al. 2019. Quantifying cellulose accessibility during enzyme-mediated deconstruction using 2 fluorescence-tagged carbohydrate-binding modules. Proc. Natl. Acad. Sci. USA 116: 22545-22551.   DOI
35 Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH. 2010. In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour. Technol. 101: 6084-6091.   DOI
36 Bae S, Sugano Y, Shoda M. 2004. Improvement of bacterial cellulose production by addition of agar in a jar fermentor. J. Biosci. Bioeng. 97: 33-38.   DOI
37 Grande CJ, Torres FG, Gomez CM, Bano MC. 2009. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater. 5: 1605-1615.   DOI
38 Jung YH, Kim IJ, Han JI, Choi IG, Kim KH. 2011. Aqueous ammonia pretreatment of oil palm empty fruit bunches for ethanol production. Bioresour. Technol. 102: 9806-9809.   DOI
39 Benchabane A, Bekkour K. 2008. Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid. Polym. Sci. 286: 1173.   DOI
40 Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HM. 2017. Lignocellulose: a sustainable material to produce value-added products with a zero waste approach-a review. Int. J. Biol. Macromol. 99: 308-318.   DOI
41 Badshah M, Ullah H, Khan AR, Khan S, Park JK, Khan T. 2018. Surface modification and evaluation of bacterial cellulose for drug delivery. Int. J. Biol. Macromol. 113: 526-533.   DOI
42 van Rie J, Thielemans W. 2017. Cellulose-gold nanoparticle hybrid materials. Nanoscale 9: 8525-8554.   DOI
43 Fernandes IdAA, Pedro AC, Ribeiro VR, Bortolini DG, Ozaki MSC, Maciel GM, et al. 2020. Bacterial cellulose: from production optimization to new applications. Int. J. Biol. Macromol. 164: 2598-2611.   DOI
44 Jacek P, Dourado F, Gama M, Bielecki S. 2019. Molecular aspects of bacterial nanocellulose biosynthesis. Microb. Biotechnol. 12: 633-649.   DOI
45 Mokhena T, Sefadi J, Sadiku E, John M, Mochane M, Mtibe A. 2018. Thermoplastic processing of PLA/cellulose nanomaterials composites. Polymers 10: 1363.   DOI
46 Sulaeva I, Henniges U, Rosenau T, Potthast A. 2015. Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol. Adv. 33: 1547-1571.   DOI
47 Wan Y.Z, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, et al. 2006. Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos. Sci. Technol. 66: 1825-1832.   DOI
48 Auta R, Adamus G, Kwiecien M, Radecka I, Hooley P. 2017. Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. Afr. J. Biotechnol. 16: 470-482.
49 Tokoh C, Takabe K, Fujita M, Saiki H. 1998. Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5: 249-261.   DOI
50 Choi SM, Shin EJ. 2020. The nanofication and functionalization of bacterial cellulose and its applications. Nanomaterials 10: 406.   DOI