• Title/Summary/Keyword: Bacterial DNA

Search Result 1,101, Processing Time 0.025 seconds

Statistical Optimization for Production of Carboxymethylcellulase from Rice Hulls by a Newly Isolated Marine Microorganism Bacillus licheniformis LBH-52 Using Response Surface Method (통계학적인 방법과 왕겨를 기질로 사용하여 해양에서 분리한 Bacillus licheniformis LBH-52 를 사용한 carboxymethylcellualse의 생산조건 최적화)

  • Kim, Hye-Jin;Gao, Wa;Chung, Chung-Han;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1083-1093
    • /
    • 2011
  • A microorganism utilizing rice hulls as a substrate for the production of carboxymethylcellulase (CMCase) was isolated from seawater and identified as Bacillus lincheniformis by analyses of its 16S rDNA sequences. The optimal carbon and nitrogen sources for production of CMCase were found to be rice hulls and ammonium nitrate. The optimal conditions for cell growth and the production of CMCase by B. lincheniformis LBH-52 were investigated using the response surface method (RSM). The analysis of variance (ANOVA) of results from central composite design (CCD) indicated that a highly significant factor ("probe>F" less than 0.0001) for cell growth was rice hulls, whereas those for production of CMCase were rice hulls and initial pH of the medium. The optimal conditions of rice hulls, ammonium nitrate, initial pH, and temperature for cell growth extracted by Design Expert Software were 48.7 g/l, 1.8 g/l, 6.6, and 35.7$^{\circ}C$, respectively, whereas those for the production of CMCase were 43.2 g/l, 1.1 g/l, 6.8, and 35.7$^{\circ}C$. The maximal production of CMCase by B. lincheniformis LBH-52 from rice hulls under optimized conditions was 79.6 U/ml in a 7 l bioreactor. In this study, rice hulls and ammonium nitrate were developed to be substrates for the production of CMCase by a newly isolated marine microorganism, and the time for production of CMCase was reduced to 3 days using a bacterial strain with submerged fermentation.

Comparative Genetic Characterization of Plasmids of Agrobacterium Species Isolated in Korea (한국산 Agrobacterium plasmid의 유전학적 성상에 관한 연구)

  • Kim, Jung-Hye;Koo, Yong-Bum;Lee, Ki-Yung;Chung, Jae-Kyu
    • Journal of Yeungnam Medical Science
    • /
    • v.1 no.1
    • /
    • pp.41-48
    • /
    • 1984
  • The soil bacterium Agrobacterium tumefaciens is a plant pathogen that cause3 crown gall tumors by infecting the wounded dicotyledonous plants and subsequent integration of bacterial DNA into plant nuclear DNA. Virulent A. tumefaciens strains harbor a large Ti (tumor-inducing) plasmid that carries genes essential for tumorigenesis. In the present study, 13 strains (Malus pumila Mill; $A_{1-3}$, Populus monilifera; $W_{1-6}$, Populus tomentiglandlosa; $P_{1-3}$ and Rosa species; $R_1$) of Agrobacterium isolated in korean crown gall tumors and plasmids were observed in 6 strains ($W_2$, $W_3$, $W_6$, $P_1$, $P_3$ and $A_2$). The test for crown gall tumor formation was resulted only in ATCC15955 and $KW_2$ strains inoculated into the stem of sun flower and the development was observed for 4 and 6 weeks after inoculation. Above two Ti plasmids (pTi) were purified by cesium chloride-ethidium bromide density gradient centrifugation and digested with restriction enzyme and fragments of pTiATCC 15955 and $pTiKW_2$ observed by EcoR I ; 25&27, Hind III; 23&21, BamH I ; each 20 and Hpa I ; 12&27, and sizes of pTiATCC15955 and and $pTiKW_2$ calculated as 200 and 87 kbases. Octopine was isolated from tumor tissue ($W_{1-6}$ and $P_{1-3}$) and these strains confirmed as octopine type.

  • PDF

Molecular Analysis of Microbial Community in Soils Cultivating Bt Chinese Cabbage (분자생물학적 분석을 통한 Bt 배추의 토양미생물상 영향 비교평가)

  • Sohn, Soo-In;Oh, Young-Ju;Oh, Sung-Dug;Kim, Min-Kyung;Ryu, Tae-Hoon;Lee, Ki-Jong;Suh, Seok-Choel;Baek, Hyeong-Jin;Park, Jong-Sug
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.293-299
    • /
    • 2010
  • The aim of this study was to investigate the possible impact of Bt Chinese cabbage on the soil microbial community. Microbial communities were isolated from the rhizosphere of one Bt Chinese cabbage variety and four varieties of conventional ones and were subjected to be analyzed using both culture-dependent and molecular methods. The total counts of bacteria, fungi, and actinomycetes in the rhizosphere of transgenic and conventional Chinese cabbages were observed to have an insignificant difference. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that the bacterial community structures were very similar to each other and this genetic stability of microbial communities was maintained throughout the culture periods. Analysis of dominant isolates in the rhizosphere of transgenic and conventional Chinese cabbages showed that the dominant isolates from the soil of transgenic Chinese cabbage belonged to the Bacilli and Alphaproteobacteria, while the dominant isolates from the soil of conventional cabbage belonged to the Holophagae and Planctomycetacia, respectively. These results indicate that the Bt transgenic cabbage has no significant impact on the soil microbial communities.

Effect of Disodium Fumarate on In vitro Rumen Fermentation of Different Substrates and Rumen Bacterial Communities as Revealed by Denaturing Gradient Gel Electrophoresis Analysis of 16S Ribosomal DNA

  • Mao, S.Y.;Zhang, G.;Zhu, W.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.543-549
    • /
    • 2007
  • Two experiments were conducted to investigate the effects of disodium fumarate on the in vitro rumen fermentation profiles of different substrates and microbial communities. In experiment 1, nine diets (high-forage diet (forage:concentrate, e.g. F:C = 7:3, DM basis), medium-forage diet (F:C = 5:5, DM basis), low-forage diet(F:C = 1:9, DM basis), cracked corn, cracked wheat, soluble starch, tall elata (Festuca elata), perennial ryegrass and rice straw) were fermented in vitro by rumen microorganisms from local goats. The results showed that during 24 h incubations, for all substrates, disodium fumarate increased (p<0.05) the gas production, and tended to increase (p<0.10) the acetate, propionate and total VFA concentration and decrease the ratio of acetate to propionate, whereas no treatment effect was observed for the lactate concentration. The apparent DM loss for tall elata, perennial ryegrass and rice straw increased (p<0.05) with the addition of disodium fumarate. With the exception of tall elata, perennial ryegrass and rice straw, disodium fumarate addition increased the final pH (p<0.05) for all substrates. In experiment 2, three substrates (a high-forage diet, a medium-forage diet and a high concentrate diet) were fermented by mixed rumen microbes in vitro. A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique was applied to compare microbial DNA fingerprints between substrates at the end of 24 h incubation. The results showed that when Festuca elata was used as substrate, the control and disodium fumarate treatments had similar DGGE profiles, with their similarities higher than 96%. As the ratio of concentrate increased, however, the similarities in DGGE profiles decreased between the control and disodium fumarate treatment. Overall, these results suggest that disodium fumarate is effective in increasing the pH and gas production for the diets differing in forage: concentrate ratio, grain cereals and soluble starch, and in increasing dry matter loss for the forages (tall elata, perennial ryegrass and rice straw) in vitro, whereas its effect on changes of ruminal microbial community may largely depend on the general nature of the substrate.

Effect of Citrus Fermented by Lactococcus lactis W-44 Isolated from Kimchi on Growth of Cultured Flounder, Paralichthys olivaceus (김치에서 분리한 Lactococcus lactis W-44에 의한 감귤발효물의 양식 넙치 성장에 미치는 영향)

  • Kim, Min-Soo;Moon, Sang-Wook;Lee, Young-Don;Kim, Se-Jae;Kim, Yeong-Jin;Lee, Jun-Won;Lee, Jeong-Hee;Lee, Jung-Sook;Kim, Bo-Yeon;Ahn, Jong-Seog;Ahn, Soon-Cheol
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.124-129
    • /
    • 2007
  • We evaluated the use of citrus fruit fermented by lactic acid bacteria, as a feed supplement for flounder (Paralichthys olivaceus) cultivation. For the fermentation, a lactic acid bacterial strain W-44 showing antibacterial activity was isolated from kimchi. From the phylogenetic analysis based on, 16S rDNA sequence, the strain W-44 was identified as Lactococcus lactis. After the fermentation of citrus fruit with L. lactis W-44, the contents of naringenin and hesperetin, bioactive flavonoid aglycones, were increased about ten-fold and six-fold, respectively. The effects of fermented citrus fruit-based feed additives (CFBFA) were tested on the growth of flounder, Paralichthys olivaceus. There were significant differences in average total length and body weight between the experimental and control group. The growth rate of the experimental group fed with the 0.2% CFBFA-supplemented diet was increased 4.5% and 20.9% more than the control group in total length and body weight, respectively. These results suggest that the fermented citrus fruit could be used as a functional feed additive for flounder cultivation.

Growth Promotion of Tomato by Application of Immobilized Arthrobacter woluwensis ED in Alginate Beads (Alginate에 고정화된 Arthrobacter woluwensis ED 처리 시 토마토의 생장촉진과 균주의 토양 내 잔류)

  • Kwon, Seung-Tak;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.50 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • In order to increase the persistence of plant growth promoting rhizobacteria (PGPR) in rhizpsphere soil, the growth of tomato was examined after the application of Arthrobacter woluwensis ED immobilized in alginate bead, which was known as PGPR. When tomato seedlings were treated with A. woluwensis ED of $1{\times}10^6$ cells g $soil^{-1}$ and incubated for 30 days in a plant growth chamber, the shoot length, root length, fresh weight and dry weight of the grown tomato plants treated with the suspended inoculants significantly increased by 36.2, 59, 51.1, and 37.5%, respectively compared to those of the uninoculated control. The treatment of the immobilized bacteria increased those by 42, 67.4, 62.5, and 60.4%, respectively compared to those of the uninoculated control. Therefore, the enhancement of tomato growth by the treatment of the immobilized bacteria was higher than those by the suspended inoculants. The effects of the inoculation on indigenous bacterial community and the fate of the inoculated bacteria were monitored by denaturing gradient gel electrophoresis analysis. The DNA band intensity of A. woluwensis ED in the tomato rhizosphere treated with the suspended inoculants continuously decreased after the inoculation, but the band intensity in the tomato rhizosphere soils treated with the immobilized inoculants showed the maximum at 1 week after inoculation and the decreasing rate was less than that of the suspended inoculants, which indicated the longer maintenance of the immobilized bacteria at rhizosphere soils. Therefore, encapsulation of PGPR in alginate beads may be more effective than liquid inoculant for the plant growth promotion and survival of PGPR at plant rhizosphere.

Evaluation of Disease Resistance of a Leaffolder-resistant (Cry1Ac1) Rice Event and Gene Transfer to Plant Pathogens (혹명나방 저항성벼(Cry1Ac1)의 병해 저항성 및 병원균으로의 유전자 전이)

  • Nam, Hyo-Song;Shim, Hong-Sik;Yu, Sang-Mi;Lee, Se-Won;Kwon, Soon-Jong;Kim, Myung-Kon;Lee, Yong-Hoon
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.202-208
    • /
    • 2009
  • The genetically modified leaffolder-resistant (Cry1Ac1) rice plant was evaluated for the changes of resistance by comparing the occurrence of major diseases with a japonica type Korean rice variety, Nakdong which was the mother plant of the transgenic rice event, in greenhouse and field conditions. There was no difference in the occurrence of sheath blight and Helminthosporium blight between the two varieties in the fields. We couldn't find any difference of resistance for fungal blast and bacterial leaf blight by artificial inoculation in greenhouse. There was also no difference in the susceptibility to sheath blight in artificial inoculation tests confirming the results in the fields. The possibility of gene transfer of Bar and Cry1Ac1 from the genetically modified rice plant to naturally infected pathogens such as Fusarium moniliforme and Pyricularia oryzae in the field conditions was tested by PCR. And the possible transfer of those genes by continuous inoculation of Xanthomonas oryzae pv. oryzae and Rhizoctonia solani was also tested. However, we couldn't find any possibility of transfer of the genes in natural and artificial conditions.

Biological Control of Sclerotinia sclerotiorum in Lettuce Using Antagonistic Bacteria (길항세균을 이용한 상추 균핵병의 생물학적 방제)

  • Chon, Bong-Goan;Park, Suji;Kim, Jin-Won
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.12-20
    • /
    • 2013
  • To isolate antagonistic bacteria against sclerotinia rot of lettuce, caused by Sclerotinia sclerotiorum, soil samples were collected from the diseased greenhouse field in Namyangju city, Gyeong-gi province from 2007 to 2008. A total of 196 bacterial isolates were isolated using serial dilution method. In dual culture assay in vitro, 26 isolates showed more than 80% of inhibition rates of mycelial growth of S. sclerotiorum. Based on 16S rDNA sequence analysis, the 26 isolates were identified as Bacillus megaterium, B. cereus, B. subtilis, Arthrobacter nicotianae, A. ramosus, Pseudomonas filiscindens, Stenotrophomonas maltophilia, Brevibacterium frigoritolerans and Sphingobacterium faecium. The 26 isolates inhibited the mycelial growth of S. sclerotiorum up to 80% and the sclerotial germination 0-100%. In the greenhouse pot test of ten isolates conducted in summer, 2 isolates B. megaterium (DK6) and B. cereus (C210) showed control efficacy on sclerotia viability of S. sclerotiorum, 20% and 35%, respectively. In the greenhouse pot test in winter, the disease incidence of the control group was 80%, whereas those of 9 isolates among 26 were approximately 20%. From the result, the 9 isolates are expected as potentially antagonistic bacteria for biological control of sclerotinia rot of lettuce caused by S. sclerotiorum.

Biological Control of Phytophthora Blight and Anthracnose Disease in Red-pepper Using Bacillus subtilis S54 (Bacillus subtilis S54 균주를 이용한 고추 역병과 탄저병의 생물학적 방제)

  • Lee, Gun-Woong;Kim, Myung-Jun;Park, Jun-Sik;Chae, Jong-Chan;Soh, Byoung-Yul;Ju, Jae-Eun;Lee, Kui-Jae
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.86-89
    • /
    • 2011
  • Phytophthora blight and anthracnose disease caused by Phytophthora capsici and Collectotrichum gloeosporioides are the most important devastating diseases of red pepper plants, worldwide. Five different bacterial isolates were isolated from the red pepper rhizosphere and non-rhizosphere soil and subsequently tested for antagonistic activity against P. capsisi and C. gloeosporioides. The area of the inhibition zone was taken as a measure for antagonistic activity. Among the 5 isolates tested, S54 exhibited a maximum antagonistic activity under in vitro and in vivo conditions. In greenhouse studies the isolate has successfully reduced the disease symptom. Protect value was 80.8% (Phytophthora blight) and 81.9% (Anthrancnose disease), whereas the infection rate of control plants was 21.3% and 23.2%. Based on the 16S rDNA sequence and API 50CHB Kit analysis the most effective isolate was identified as Bacillus subtilis. The results of the study indicate that the stratin S54 could be used as an potential biological control of Phytophthora blight and anthracnose disease of red pepper.

One-step Multiplex RT-PCR Method for Simultaneous Detection of Seed Transmissible Bacterium and Virus Occurring on Brassicaceae Crop Seeds (십자화과 작물 종자에서 종자전염 세균 및 바이러스 동시 검출을 위한 One-step Multiplex RT-PCR 방법)

  • Jeong, Kyu-Sik;Soh, Eun-Hee
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2011
  • The aim of this research was to develop specific and sensitive PCR-based procedures for simultaneous detection of economically important plant pathogenic bacteria and seed borne virus in commercial Brassicaceae crop seeds, Xanthomonns campestris pv. campestris (Xcc) and Lettuce Mosaic Virus (LMV). Bacterial and virus diseases of Brassicaceae leaves are responsible for heavy losses. PCR with arbitral primers: selection of specific primers, performance of PCR with specific primers and determination of the threshold level for pathogens detection. To detect simultaneously the Xcc and LMV in commercial Brassicaceae crop seeds (lettuce, kohlrabi, radish, chinese cabbage and cabbage), two pairs of specific primer (LMV-F/R, Xcc-F/R) were synthesized by using primer-blast program (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). The multiplex PCR for the two pathogens in Brassicaceae crop seeds could detect specifically without interference among primers and/or cDNA of other plant pathogens. The pathogen detection limit was determined at 1 ng of RNA extracted from pathogens. In the total PCR results for pathogen detection using commercial kohlrabi (10 varieties), lettuce (50 varieties), radish (20 varieties), chinese cabbage (20 varieties) and cabbage (20 varieties), LMV and Xcc were detected from 39 and 2 varieties, respectively. In the PCR result of lettuce, LMV and Xcc were simultaneously detected in 8 varieties.