DOI QR코드

DOI QR Code

Growth Promotion of Tomato by Application of Immobilized Arthrobacter woluwensis ED in Alginate Beads

Alginate에 고정화된 Arthrobacter woluwensis ED 처리 시 토마토의 생장촉진과 균주의 토양 내 잔류

  • Kwon, Seung-Tak (Department of Biological Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
  • Received : 2014.02.14
  • Accepted : 2014.03.26
  • Published : 2014.03.31

Abstract

In order to increase the persistence of plant growth promoting rhizobacteria (PGPR) in rhizpsphere soil, the growth of tomato was examined after the application of Arthrobacter woluwensis ED immobilized in alginate bead, which was known as PGPR. When tomato seedlings were treated with A. woluwensis ED of $1{\times}10^6$ cells g $soil^{-1}$ and incubated for 30 days in a plant growth chamber, the shoot length, root length, fresh weight and dry weight of the grown tomato plants treated with the suspended inoculants significantly increased by 36.2, 59, 51.1, and 37.5%, respectively compared to those of the uninoculated control. The treatment of the immobilized bacteria increased those by 42, 67.4, 62.5, and 60.4%, respectively compared to those of the uninoculated control. Therefore, the enhancement of tomato growth by the treatment of the immobilized bacteria was higher than those by the suspended inoculants. The effects of the inoculation on indigenous bacterial community and the fate of the inoculated bacteria were monitored by denaturing gradient gel electrophoresis analysis. The DNA band intensity of A. woluwensis ED in the tomato rhizosphere treated with the suspended inoculants continuously decreased after the inoculation, but the band intensity in the tomato rhizosphere soils treated with the immobilized inoculants showed the maximum at 1 week after inoculation and the decreasing rate was less than that of the suspended inoculants, which indicated the longer maintenance of the immobilized bacteria at rhizosphere soils. Therefore, encapsulation of PGPR in alginate beads may be more effective than liquid inoculant for the plant growth promotion and survival of PGPR at plant rhizosphere.

전 세계적으로 친환경 농업을 위해 식물생장촉진 근권세균을 이용한 미생물 비료에 대한 관심이 증가하고 있는데 투여하는 세균을 식물 근권에 보다 장기간 잔류시키기 위해 식물생장 촉진능이 있는 균주를 alginate bead에 고정화하여 식물생장을 조사하였다. 발아된 토마토 유묘에 Arthrobacter woluwensis ED를 $1{\times}10^6$ cells/g 로 처리하고 30일 재배 후 자라난 토마토의 shoot와 뿌리 길이 및 습윤과 건조중량을 측정한 결과 비접종 대조군과 비교하여 균주 현탁액 접종군은 각각 36.2, 59.0, 51.1과 37.5%씩 유의성 있게 증가하였으며 고정화 균주 접종군은 각각 42.0, 67.4, 62.5와 60.4%씩 유의성 있게 증가하였다. 고정화 균주 접종군은 균주 현탁액 접종군에 비하여 각각 6, 8, 11과 23% 증가하였다. 접종 균주가 식물 근권에서 유지되는 양상을 관찰하기 위해 denaturing gradient gel electrophoresis를 이용하여 토양세균 군집을 분석하였는데 균주 현탁액 접종군에서 ED 균주의 DNA band intensity는 접종일로부터 1주일까지 가장 높게 나타났으나 그 이후로 감소하여 접종 2주 후 비접종 대조군과 비슷한 band intensity를 나타내었다. 반면, 고정화 균주 접종군의 ED 균주 band intensity는 접종일로부터 초기에는 비접종 대조군과 비슷하였으나 이후 급격하게 증가하여 계속 높게 유지되어 3주까지 band intensity가 현탁액 접종군 보다 높았다. 따라서 alginate에 A. woluwensis ED를 고정하여 적용하는 방법이 현탁액 적용보다 식물 근권에 균주의 공급을 효과적으로 유지하면서 식물생장을 더욱 촉진하는 것으로 나타났다.

Keywords

References

  1. Bashan, Y. 1986. Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl. Environ. Microbiol. 51, 1089-1098.
  2. Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv. 16, 729-770. https://doi.org/10.1016/S0734-9750(98)00003-2
  3. Bashan, Y. and Gonzalez, L.E. 1999. Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl. Microbiol. Biotechnol. 51, 262-266. https://doi.org/10.1007/s002530051391
  4. Bashan, Y., Hernandez, J.P., Leyva, L.A., and Bacilio, M. 2002. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol. Fertil. Soils 35, 359-368. https://doi.org/10.1007/s00374-002-0481-5
  5. Dutta, S. and Podile, A.R. 2010. Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit. Rev. Microbiol. 36, 232-244. https://doi.org/10.3109/10408411003766806
  6. Goodfellow, M., Kampfer, P., Busse, H., Trujillo, M., Suzuki, K., Ludwig, W., and Whitman, W. 2012. Bergey's Manual of Systematic Bacteriology Vol. 5, pp. 578-585, Springer, New York, N.Y., USA.
  7. Hashimoto, W., Miyake, O., Momma, K., Kawai, S., and Murata, K. 2000. Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate. J. Bacteriol. 182, 4572-4577. https://doi.org/10.1128/JB.182.16.4572-4577.2000
  8. Haug, A. 1959. Fractionation of alginic acid. Acta Chem. Scand. 13, 601-603. https://doi.org/10.3891/acta.chem.scand.13-0601
  9. Heijnen, C.E. and Van Veen, J.A. 1991. A determination of protective microhabitats for bacteria introduced into soil. FEMS Microbiol. Lett. 85, 73-80. https://doi.org/10.1111/j.1574-6968.1991.tb04699.x
  10. Kim, I.Y., Pusey, P.L., Zhao, Y., Korban, S.S., Choi, H., and Kim, K.K. 2012. Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple. J. Control. Release 161, 109-115. https://doi.org/10.1016/j.jconrel.2012.03.028
  11. Kim, K.M. and Song, H.G. 2014. Revegetation of barren lakeside land through growth enhancement of Xanthium italicum by rhizobacteria. Paddy Water Environ. In press.
  12. Minaxi, J.S. 2011. Efficacy of rhizobacterial strains encapsulated in nontoxic biodegradable gel matrices to promote growth and yield of wheat plants. Appl. Soil Ecol. 48, 301-308.
  13. Muyzer, G., De Waal, E.C., and Uitterlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700.
  14. Rekha, P.D., Lai, W.A., Arun, A.B., and Young, C.C. 2007. Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresour. Technol. 98, 447-451. https://doi.org/10.1016/j.biortech.2006.01.009
  15. Schoebitz, M., Mengual, C., and Roldan, A. 2014. Combined effects of clay immobilized Azospirillum brasilense and Pantoea dispersa and organic olive residue on plant performance and soil properties in the revegetation of a semiarid area. Sci. Total Environ. 466-467, 67-73. https://doi.org/10.1016/j.scitotenv.2013.07.012
  16. Segura, A., De Wit, P., and Preston, G.M. 2009. Life of microbes that interact with plants. Microb. Biotechnol. 2, 412-415. https://doi.org/10.1111/j.1751-7915.2009.00129.x
  17. Vassilev, N., Vassileva, M., Fenica, M., and Federici, F. 2001. Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and P plant acquisition. Bioresour. Technol. 79, 263-271. https://doi.org/10.1016/S0960-8524(01)00017-7
  18. Watanabe, T., Asakawa, S., Nakamura, A., Nagaoka, K., and Kimura, M. 2004. DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil. FEMS Microbiol. Lett. 232, 153-163. https://doi.org/10.1016/S0378-1097(04)00045-X
  19. Wu, Z., Guo, L., Qin, S., and Li, C. 2012. Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J. Ind. Microbiol. Biotechnol. 39, 317-327. https://doi.org/10.1007/s10295-011-1028-2