Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.8.1083

Statistical Optimization for Production of Carboxymethylcellulase from Rice Hulls by a Newly Isolated Marine Microorganism Bacillus licheniformis LBH-52 Using Response Surface Method  

Kim, Hye-Jin (Department of Medical Bioscience, Graduate School of Donga-A University)
Gao, Wa (Department of Medical Bioscience, Graduate School of Donga-A University)
Chung, Chung-Han (BK21 Bio-Silver Program of Dong-A University)
Lee, Jin-Woo (BK21 Bio-Silver Program of Dong-A University)
Publication Information
Journal of Life Science / v.21, no.8, 2011 , pp. 1083-1093 More about this Journal
Abstract
A microorganism utilizing rice hulls as a substrate for the production of carboxymethylcellulase (CMCase) was isolated from seawater and identified as Bacillus lincheniformis by analyses of its 16S rDNA sequences. The optimal carbon and nitrogen sources for production of CMCase were found to be rice hulls and ammonium nitrate. The optimal conditions for cell growth and the production of CMCase by B. lincheniformis LBH-52 were investigated using the response surface method (RSM). The analysis of variance (ANOVA) of results from central composite design (CCD) indicated that a highly significant factor ("probe>F" less than 0.0001) for cell growth was rice hulls, whereas those for production of CMCase were rice hulls and initial pH of the medium. The optimal conditions of rice hulls, ammonium nitrate, initial pH, and temperature for cell growth extracted by Design Expert Software were 48.7 g/l, 1.8 g/l, 6.6, and 35.7$^{\circ}C$, respectively, whereas those for the production of CMCase were 43.2 g/l, 1.1 g/l, 6.8, and 35.7$^{\circ}C$. The maximal production of CMCase by B. lincheniformis LBH-52 from rice hulls under optimized conditions was 79.6 U/ml in a 7 l bioreactor. In this study, rice hulls and ammonium nitrate were developed to be substrates for the production of CMCase by a newly isolated marine microorganism, and the time for production of CMCase was reduced to 3 days using a bacterial strain with submerged fermentation.
Keywords
Bacillus licheniformis; marine microorganism; carboxymethylcellulase; rice hulls; optimization; response surface method;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Chakraborty, K. and R. P. Raj. 2008. An extra-cellular alkaline metallolipase from Bacills licheniformis MTCC 6824: purification and biochemical characterization. Food Chem. 109, 727-736.   DOI
2 Chen, H. and S. Jin. 2006. Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose. Enzym. Microb. Technol. 39, 1430-1432.   DOI
3 Chun, J. 1995. Computer-assisted classification and identification of actinomycestes. Ph. D. Thesis, University of Newcastle, Newcastle upon Tyne, UK.
4 Emtiazi, G. and I. Nahvi. 2000 Multi-enzyme production by Cellulomonas sp. grown on wheat straw. Biomass Bioenergy 19, 31-37.   DOI
5 Gavaco-Paulo, A. 1998. Mechanism of cellulase action in textile processes. Carbohydr. Polym. 37, 273-277.   DOI
6 Henrissat, B., H. Driguez, C. Viet, and M. Schulein. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biotechnol. 3, 722-726.   DOI
7 Hmidet, N., A. Bayoudh, J. G. Berrin, S. Kanoun, N. Jude, and M. Nasri. 2008. Purification and biochemical characterization of a novel $\alpha$-amylase from Bacillus licheniformis NH1 cloning, nucleotide sequence and expression of amyN gene in Esherichia coli. Process Biochem. 43, 499-510.   DOI
8 Wei, G. Y., W. Gao, I. H. Jin, S. Y. Yoo, J. H. Lee, C. H. Chung, and J. W. Lee. 2009. Pretreatment and saccharifiction of rice hulls for the production of fermentable sugars. Biotechnol. Bioprocess Eng. 14, 828-834.   DOI
9 Weisburg, W. G., S. M. Barns, D. A. Pelletire, and D. J. Lane. 1991. 16S ribosomal DNA amplication for phylogenetic study. J. Bacteriol. 173, 697-703.
10 Yu, X. B., J. H. Nam, H. S. Yun, and Y. M. Koo. 1998. Optimization of cellulose production in batch fermentation by Trichoderma reesei. Biotechnol. Bioprocess Eng. 3, 44-47.   DOI
11 Rajoka, M. I. and K. A. Malik. 1997. Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates. Bioresource Technol. 59, 21-27.   DOI
12 Rasmussnen, R. S. and M. T. Morrissey. 2007. Marine biotechnology for production of food ingredients. Adv. Food Nut. Res. 52, 237-292.   DOI
13 Sen, R. 1997. Response surface optimization of the critical media components for the production of surfactin. J. Chem. Tech. Biotechnol. 68, 263-270.   DOI
14 Ryu, D. D. Y. and M. Mandels. 1980. Cellulase: biosynthesis and applications. Enzym. Microb. Technol. 2, 91-102.   DOI
15 Saha, B. C., L. B. Iten, M. A. Cotta, and Y. Wu. 2005. Dilute acid pretreatment, enzymatic saccharification, and fermentation of RHs to fuel ethanol. Biotechnol. 21, 816-822.
16 Saha, B. C., L. B. Iten, M. A. Cotta, and Y. Wu. 2005. Dilute acid pretreatment, enzymatic saccharification, and fermentation of RHs to fuel ethanol. Biotechnol. 21, 816-822.
17 Sukumaran, R. K., R. R. Singhania, G. M. Mathew, and A. Pandey. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34, 421-424.   DOI
18 Tao, S., L. Beihui, L. Zuohu, and L. Deming. 1999. Effects of air pressure amplitude on productivity by Trichoderma viride SL-1 in periodic pressure solid state fermenter. Process Biochem. 34, 25-29.   DOI
19 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions- specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI
20 Kim, H. J., W. Gao, Y. J. Lee, C. H. Chung, and J. W. Lee. 2010. Characterization of acidic carboxymethylcellulase produced by a marine microorganism, Psychrpbacter aquimaris LBH-10. J. Life Sci. 20, 487-495.   DOI
21 Krishna, C. 1999. Production of bacterial cellulases by a solid state bioprocessing of banana wastes. Bioresource Technol. 69, 231-239.   DOI
22 Maeadza, C., R. Hatti-Kaul, R. Zvauya, and B. Mattiasson. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83, 177-187.   DOI
23 Kumar, S., K. Tamura, and N. Nei. 1993. MEGA: Molecular evolutionary genetic analysis. Version 1.01. The Pennsylvania State University, University Park, USA.
24 Lee, B. H., B. K. Kim, Y. J. Lee, C. H. Chung, and J. W. Lee. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillulus subsp. subtilis A-53. Enzym. Microb. Technol. 46, 38-42.   DOI
25 Lee, S. M. and Y. M. Koo. 2001. Pilot-scale production of cellulose using Trichoderma reesei Rut C-30 in fed-batch mode. J. Microbiol. Biotechnol. 11, 229-233.
26 Malinowska, E., W. Krzyczkowski, G. Lapienis, and F. Herold. 2009. Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: optimization using a central composite rotatable design (CCRD). J. Ind. Microbiol. Biotechnol. 36, 1513-1527.   DOI
27 Mayende, L., B. S. Wilhelmi, and B. I. Pletschke. 2006. Cellulases (CMCases) and polyphenol oxidases from thermophilic Bacillus sp. isolated from compost. Soil Biol. Biochem. 38, 2963-2966.   DOI
28 Miller, G., L. Blum, R. Glennon, and A. L. Burton. 1960. Measurement of carboxymethylcellulaase activity. Anal. Biochem. 2, 127-132.
29 Jecu, L. 2000. Solid state fermentation of agricultural wastes for endogulcanse production. Ind. Crops Prod. 11, 1-5.   DOI
30 Jo, K. I., Y. J. Lee, B. K. Kim, B. H. Lee, C. H. Jung, S. W. Nam, S. K. Kim, and J. W. Lee. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioprocess Eng. 13, 182-188.   DOI
31 Khuri, A. I. and J. A. Cornell. 1987. Response surfaces: Design and analysis. Marcel Dekker, New York, USA.
32 Alam, M. Z., S. A. Muyibi, and R. Wahid. 2008. Statistical optimization of process conditions for cellulose production by liquid state bioconversion of domestic wastewater sludge. Bioresource Technol. 99, 4709-4716.   DOI
33 Archana, A. and T. Satyanarayana. 1997. Xylanase production by thermophilic Bacillus licheniformis A99 in solid-state fermentation. Enzym. Microb. Technol. 21, 12-17.   DOI
34 Kalogeris, E., P. Christakopoulos, P. Katapodis, A. Alexious, S. Vlachou, D. Kekos, and B. J. Macris. 2003. Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural waste. Process Biochem. 38, 1099-1104.   DOI
35 Kang, S. W., Y. S. Park, J. S. Lee, S. I. Hong, and S. W. Kim. 2004. Production of cellulase and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technol. 91, 153-156.   DOI
36 Khambhaty, Y., K. Mody, and B. Jha. 2007. Purification and characterization of $\kappa$-carrageenase from a novel γ -proteobacterium, Pseudomonas elongate (MTCC 5261) syn. Microbulbifer elongates comb. Nov. Biotechnol. Bioprocess Eng. 12, 668-675.   DOI
37 Kim, B. K., B. H. Lee, Y. J. Lee, I. H. Jin, C. H. Chung, and J. W. Lee. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzym Microb. Technol. 44, 411-416.   DOI
38 Kim, D. G., E. Y. Kim, J. K. Kim, H. S. Lee, and I. S. Kong. 2011. Application of $\beta$-1,3-glucanase from Pyrococcus furiosus for ethanol production using laminarian. J. Life Sci. 21, 68-73.   DOI
39 Ballesteros, M., J. M. Oliva, M. J. Negro, P. Manzannares, and I. Ballesteros. 2004. Ethanol from lignocellulosic materials by a simultaneous saccharfication and fermentation process (SSF) with Kluyveromeces marxianus CECT 10875. Process Biochem. 39, 1843-1848.   DOI
40 Blumer-Schuette, S. E., I. Kataeva, J. Westpheling, M. W. W. Adams, and R. M. Kelly. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr. Opin. Biotechnol. 19, 210-217.   DOI