• Title/Summary/Keyword: Bacterial Biomass

Search Result 181, Processing Time 0.022 seconds

Removal Characteristics of Tetracycline, Oxytetracycline, Trimethoprime and Caffeine in Biological Activated Carbon Process (생물활성탄 공정에서 Tetracycline, Oxytetracycline, Trimethoprime 및 Caffeine 제거특성)

  • Son, Hee-Jong;Hwang, Young-Do;Yoo, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.186-192
    • /
    • 2009
  • In this study, The effects of three different activated carbon materials (each coal, coconut and wood based activated carbons), empty bed contact time (EBCT) and water temperature on the removal of pharmaceutical 4 species (oxytetracycline, tetracycline, trimethoprime and caffeine) in BAC filters were investigated. Experiments were conducted at three water temperature (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BAC, increasing EBCT or increasing water temperature increased the pharmaceutical 4 species removal in BAC columns. In the coal-based BAC columns, removal efficiencies of oxytetracycline and tetracycline were 87~100% and removal efficiencies of trimethoprime and caffeine were 72~99% for EBCT 5~20 min at $25^{\circ}C$. The kinetic analysis suggested a firstorder reaction model for pharmaceutical 4 species removal at various water temperatures (5~$25^{\circ}C$). The pseudo-first-order reaction rate constants and half-lives were also calculated for pharmaceutical 4 species removal at 5~$25^{\circ}C$. The reaction rate and half-lives of pharmaceutical 4 species ranging from 0.0360~0.3954 $min^{-1}$ and 1.75 to 19.25 min various water temperatures and EBCTs, could be used to assist water utilities in designing and operating BAC filters.

Effect of Agitation on Production of Methylan and Rheological Characteristics of Methylan Fermentation Broth (다당류, 메틸란, 발효밴잉액의 점성특성과 메틸란 생산에 미치는 교반속도의 영향)

  • Oh, Deok-Kun;Lim, Hyun-Soo;Kim, Jung-Hoe
    • Applied Biological Chemistry
    • /
    • v.38 no.3
    • /
    • pp.191-195
    • /
    • 1995
  • Production of a high viscosity exoploysaccharide, methylan, by Methylobacterium organophilum from methanol was carried out in fed-batch cultures and the rheological properties of methylan fermentation broth were studied. Bacterial biomass showed little influence on viscosity, but the accumulation of methylan caused the increase of viscosity. With proceeding fermention, the viscosity at the same concentration of methylan was significantly increased and methylan solution showed slightly higher pseudoplasticity. The composition changes of methylan were investigated at various fermentation times. Contents of total sugar, reducing sugar and methylan were decreased but contents of acids(pyruvic acid, uronic acid and acetic acid) were increased with the culture time. It was considered that the increased content of acids resulted in the increase of the hyrodynamic domain in the solution due to charge repulsion. Consequently, the solution viscosity increased in propotion to the acids contents of methylan. Cell growth and methylan production were severely decreased by the limitation of dissolved oxygen. However, the cellular activity for methylan production was almost constant regardless of the level of dissolved oxygen. As a result, the high speed of agitation increased the methylan production, the specific production rate of methylan, and the methylan yield of the cell.

  • PDF

Reduction of VOCs and the Antibacterial Effect of a Visible-Light Responsive Polydopamine (PDA) Layer-TiO2 on Glass Fiber Fabric (Polydopamine (PDA)-TiO2 코팅 유리섬유 직물을 이용한 VOCs의 저감 성능 및 항균성 연구)

  • Park, Seo-Hyun;Choi, Yein;Lee, Hong Joo;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.540-547
    • /
    • 2021
  • Background: Indoor air pollutants are caused by a number of factors, such as coming in from the outside or being generated by internal activities. Typical indoor air pollutants include nitrogen dioxide and carbon monoxide from household items such as heating appliances and volatile organic compounds from building materials. In addition there is carbon dioxide from human breathing and bacteria from speaking, coughing, and sneezing. Objectives: According to recent research results, most indoor air pollution is known to be greatly affected by internal factors such as burning (biomass for cooking) and various pollutants. These pollutants can have a fatal effect on the human body due to a lack of ventilation facilities. Methods: We fabricated a polydopamine (PDA) layer with Ti substrates as a coating on supported glass fiber fabric to enhance its photo-activity. The PDA layer with TiO2 was covalently attached to glass fiber fabric using the drop-casting method. The roughness and functional groups of the surface of the Ti substrate/PDA coated glass fiber fabric were verified through infrared imaging microscopy and field emission scanning electron microscopy (FE-SEM). The obtained hybrid Ti substrate/PDA coated glass fiber fabric was investigated for photocatalytic activity by the removal of ammonia and an epidermal Staphylococcus aureus reduction test with lamp (250 nm, 405 nm wavelength) at 24℃. Results: Antibacterial properties were found to reduce epidermal staphylococcus aureus in the Ti substrate/PDA coated glass fiber fabric under 405 nm after three hours. In addition, the Ti substrate/PDA coated glass fiber fabric of VOC reduction rate for ammonia was 50% under 405 nm after 30 min. Conclusions: An electron-hole pair due to photoexcitation is generated in the PDA layer and transferred to the conduction band of TiO2. This generates a superoxide radical that degrades ammonia and removes epidermal Staphylococcus aureus.

Temporal and Spatial Variations of Particulate Organic Matter in the Southeastern Coastal Bays of Korea (한반도 남동 연안내만 입자유기물질의 시$\cdot$공간 변동 특성)

  • LEE Pil-Yong;KANG Chang-Keun;CHOI Woo-Jeung;LEE Won-Chan;YANG Han-Soeb
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.1
    • /
    • pp.57-69
    • /
    • 2001
  • The chemical, elemental and biochemical components of the suspended particulate matter (SPM) were investigated in order to quantify particulate organic matter (POM) and assess diet quality for suspension feeders in the southern coastal bay systems of Korea where the marine farming of the suspension feeders are most active, The intense field observation program was carried out seasonally in the three coastal bay systems of Chinhae, Gosung and Kangjin bays, The SPM was characterized as collective properties of organic carbon (POC), nitrogen (PON), phosphorus (PP) and more refined collective properties of protein (PPr), carbohydrate (PCHO) and chlorophyll a (Chl a) compound. Although the three coastal bays are regarded as phytoplankton based ecosystem, the SPM is not composed entirely with phytoplankton cells. Due to the shallow water depth, resuspension of bottom sediment contributes significantly to some of the regions. Therefore, concentration of SPM in the surface water did not co-vary with Chl a or PPr, PCHO. In general, temporal variation of POC, PON and Chl a contents in seawater were closely associated with phytoplankton biomass in the three coastal bays, However, PPr and PCHO contents in seawater were higher in Chinhae bay than in Gosung and Kangjin bays and Chl a PPr-N ratio was higher in Chinhae bay than in Kosung and Kangjin bays, since Chinhae bay is more eutrophicated than other bays. Average C : N ratios from regressions of POC and PON of SPM were 6.6, 6.6 and 5.0 in Chinhae, Gosung and Kangjin bays, respectively. SPM in Chinhae and Gosung bays appears to be made of largely phytoplankton cells and SPM in Kangjin bay appears to be contributed from the bacterial biomass due to the shallow water depth. N : P ratios from regressions of PON and PP of SPM were 10.8 and 14.7 in spring, and 18.2 and 24.6 in Chinhae and Gosung bays, respectively. With respect to the hypothetical Redfield molecule, phytoplankton appears to be limited by the lack of N and f in spring and summer, respectively, in the two bays, In Kangjin bay, N : P ratios from regressions of PON and PP of SPM were varied from 6.3 to 12.8 throughout the year. The low N : P ratio with resepct to the hypothetical Redfield molecule, phytoplankton growth appears to be limited by the lack of N-nutrients.

  • PDF

Soil Chemical Property and Microbial Community under Organic and Conventional Radish Farming Systems (무 유기재배와 관행재배 토양의 화학성과 미생물 군집 비교)

  • Kang, Ho-Jun;Yang, Sung-Nyun;Song, Kwan-Cheol;Cho, Young-Yuen;Kim, Yu-Kyoung
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.4
    • /
    • pp.479-499
    • /
    • 2019
  • This study was conducted to investigate the responses of soil properties and microbial communities to different agricultural management and soil types, including organic management in Andisols (Org-A), organic management in Non-andisols (Org-NA), conventional management in Andisols (Con-A) and conventional management in Non-andisols (Con-NA) by using a pyrosequencing approach of 16S rRNA gene amplicon in Radish farms of volcanic ash soil in Jeju island. The results showed that agricultural management systems had a little influence on the soil chemical properties but had significant influence on microbial communities. In addition, soil types had significant influences on both the soil chemical properties and microbial communities. Organic farming increased the microbial density of bacteria and biomass C compared to conventional farming, regardless of soil types. Additionally, Org-NA had the highest dehydrogenase activity among treatments, whereas no difference was found between Org-A, Con-A and Con-NA and had the highest species richness (Chao 1) and diversity (Phyrogenetic diversity). Particularly, Chao 1 and Phyrogenetic diversity were increased in organic plots by 12% and 20%, compared with conventional plots, respectively. Also, regardless of agricultural management and soil types, Proteobacteria was the most abundant bacterial phylum, accounting for 21.9-25.9% of the bacterial 16S rRNAs. The relative abundance of putative copiotroph such as Firmicutes was highest in Org-NA plot by 21.0%, as follows Con-NA (13.1%), Con-A (6.7%) and Org-A (5.1%.), respectively and those of putative oligotrophs such as Acidobacteria and Planctomycetes were higher in Con-A than those in the other plots. Furthermore, LEfSe indicated that organic system enhanced the abundance of Fumicutes, while conventional system increased the abundance of Acidobacteria, especially in Non-andisols. Correlation analysis showed that total organic carbon (TOC) and nutrient levels (e.g. available P and exchangeable K) were significantly correlated to the structure of the microbial community and microbial activity. Overall, our results showed that the continuous organic farming systems without chemical materials, as well as the soil types made by long-term environmental factors might influence on soil properties and increase microbial abundances and diversity.

Characterizations of Water Quality, and Potential Relationships of Nitrogen Components and Microbes in the Mulgol Pond on Dokdo, Korea (독도 물골의 수질 특성 및 질소화합물과 미생물간의 잠재적 관계)

  • WOO, SANG YOON;LEE, HYEON BEEN;JEONG, DONG HYUK;AN, JE BAK;YOUN, JIN SUK;PAK, JAE-HONG;PARK, JONG SOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.124-134
    • /
    • 2021
  • Water in the Mulgol pond on Dokdo (island), Korea, was historically used for drinking water, but now it has been no longer used for this purpose due to regionally low water quality. Since 2007, this pond has been covered with a metal lid to protect from pollutants of seabirds, indicating limited light penetration into the Mulgol pond. Here, we investigated water quality in the pond and potential relationships of nitrogen components and microbes in May, June, August, and November 2020. The source salinity ranged from 1.39 to 1.57 psu. Suspended solids (0.8~5.1 mg L-1) and chlorophyll-a (<0.01~0.49 ㎍ L-1) remained low. The concentration of dissolved inorganic nitrogen (DIN) was between 35.9 and 47.2 mg L-1. Thus, water in the Mulgol pond proves to be brackish water with low chlorophyll-a and high nutrients. This unique environment may be established by limited light intensity, sea fog (or seawater), and fecal pellets from many seabirds. Although the light source (800~8000 lux) was exposed to the four subsamples, chlorophyll-a concentrations were below <0.5 ㎍ L-1 during the incubation periods. This result suggests that the biomass of phytoplankton does not increase along with an increase in light intensity. Furthermore, the content of nitrate constituted more than 90% of DIN, and a significant negative correlation between nitrate concentration and bacterial abundance was shown in May and June 2020 during the light exposure experiments (R=-0.762, p<0.05). Thus, it is possible that bacteria may be a significant agent to reduce nitrate concentration in the Mulgol pond, the relationship between nitrate concentration and bacterial abundance may vary seasonally.

Removal Characteristics of Residual Hydrogen Peroxide (H2O2) according to Application of Peroxone Process in O3/BAC Process (O3/BAC 공정에서 Peroxone 공정 적용에 따른 잔류 과산화수소 제거 특성)

  • Yeom, Hoon-Sik;Son, Hee-Jong;Seo, Chang-Dong;Kim, Sang-Goo;Ryu, Dong-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.889-896
    • /
    • 2013
  • Advanced Oxidation Processes (AOP) have been interested for removing micropollutants in water. Most of water treatment plants (WTPs) located along the lower part of Nakdong River have adopted the $O_3/BAC$ process and have interesting in peroxone process a kind of AOP. This study evaluated the removal characteristics of residual hydrogen peroxide ($H_2O_2$) combining with the biofiltration process in the next BAC process when the hydrogen peroxide is applied for the WTP operating $O_3/BAC$ process. In the experiment, changing the temperature and the concentration of $H_2O_2$ of influent, the biofiltration process showed rapidly dropped the biodegradability when the $H_2O_2$ concentration was increased and lowered water temperature while BAC process maintained relatively stable efficiency. The influent fixed at $20^{\circ}C$ and the concentration of $H_2O_2$ at 300 mg/L was continuously input for 78 hours. Most of the $H_2O_2$ in the influent did not remove at the biofiltration process controlled 5 to 15 minutes EBCT condition after 24~71 hours operating time while BAC process controlled 5 to 15 minutes EBCT showed 38~91% removal efficiency condition after 78 hours operating time. Besides, after 78 hours continuously input experiment, the biomass and activity of attached bacterial on the biofilter and BAC were $6.0{\times}10^4CFU/g$, $0.54mg{\cdot}C/m^3{\cdot}hr$ and $0.4{\times}10^8CFU/g$, $1.42mg{\cdot}C/m^3{\cdot}hr$ respectively. These biomass and activity values were decreased 99% and 72% in biofilter and 68% and 53% in BAC compared with initial condition. The biodegradation rate constant ($k_{bio}$) and half-life ($t_{1/2}$) in BAC were decreased from $1.173min^{-1}$ to $0.183min^{-1}$ and 0.591 min to 3.787 min respectively according to increasing the $H_2O_2$ concentration from 10 mg/L to 300 mg/L at $5^{\circ}C$ water temperature and the $k_{bio}$ and $t_{1/2}$ were $1.510min^{-1}$ to $0.498min^{-1}$ and 0.459 min to 1.392 min at $25^{\circ}C$ water temperature. By increasing the water temperature from $5^{\circ}C$ to $15^{\circ}C$ or $25^{\circ}C$, the $k_{bio}$ were increased 1.1~2.1 times and 1.3~4.4 times. If a water treatment plant operating $O_3/BAC$ process is considering the hydrogen peroxide for the peroxone process, post BAC could effectively decrease the residual $H_2O_2$, moreover, in case of spilling the $H_2O_2$ into the water process line, these spilled $H_2O_2$ concentration can be able to decrease by increasing the EBCT at the BAC process.

Study on the Effect of Blending Ratios on the Antibacterial Activities of Chitosan/Gelatin Blend Solutions (혼합비율에 따른 키토산/젤라틴 혼합용액의 항균활성에 관한 연구)

  • Kim, Byung-Ho;Park, Jang-Woo;Hong, Ji-Hyang
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.405-411
    • /
    • 2005
  • Chitosan, second largest biomass after cellulose on earth, has potential for use as functional food package due to its antibacterial activity. However, due to high melting temperature of chitosan, chitosan films have been made by casting method. Because gelatin has relatively low molting temperature depending upon amount of plasticizer added, it was added to chitosan to produce commercially feasible film. The objective of the current study was to determine optimum blend ratio and amount of chitosan/gelatin blend solutions against antibacterial activities for extruder resin. Gram-positive bacteria (Bacillus cereus ATCC 14579 and Listeria monocytogenes ATCC 15313) and -negative bacteria (Escherichia coli ATCC 25922 and Salmonella enteritidis IFO 3313) were used. Paper (8 mm) diffusion and optical density methods were used to evaluate effect of different blending ratio solutions on the inhibition of bacterial growth. Measured clear none size ranged from 8 mm to 18.07 mm in paper diffusion test. For B. cereus, E. coli, and S. enteritidis, addition of $50\;{\mu}L$ blend solution (chitosan/gelatin = 2/8: 0.3 mg) resulted in clear zone on paper disc. In L. monocytogenes, inhibition effect was observed with 0.6 mg chitosan (chitosan/gelatin=4/6). Minimum inhibitory concentration (MIC) values of B. cerues, L. monocytogenes, E. coli, and S. enteritidis with addition of chitosan were 0.1461, 0.2419, 0.0980, and 0.0490 mg/mL, respectively, These results indicate possibility of producing commercially feasible film with addition of optimum chitosan/gelatin amount.

Biogeochemical Studies on Tidal Flats in the Kyunggi Bay: Introduction (경기만 부근 갯벌의 생지화학적 연구: 서문)

  • Cho, B.C.;Choi, J.K.;Lee, T.S.;An, S.;Hyun, J.H.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Tidal flats have been regarded to carry out transformation and removal of land-derived organic matter, and this purifying capability of organic matter by tidal flats is one of very important reasons for their conservation. However, integral biogeochemical studies on production and decomposition of organic matter by benthic microbes in tidal flats have been absent in Korea, although the information is indispensable to quantification of the purifying capability. Our major goals in this multidisciplinary research were to understand major biogeochemical processes and rates mediated by diverse groups of microbes dominating material cycles in the tidal flats, and to assess the contribution of benthic microbes to removal of organic matter and nutrients in the tidal flats. Our study sites were Ganghwa and Incheon north-port tidal flats that had been regarded as naturally well reserved and organically polluted, respectively. Our research group measured over 3 years primary production, biomass and community structure of primary producers, abundance and production of bacteria, enzyme activities, distribution of protozoa and protozoan grazing rates, rates of denitrification and sulfate reduction, early sediment diagenesis, primary production and respiration based on oxygen microelectrode. We analyzed major features of each biogeochemical process and their interactions. The results are compiled in the following articles in this special issue: An (2005), Hwang and Cho (2005), Mok et at. (2005), Na and Lee (2005), Yang et at. (2005), and Yoo and Choi (2005).

A Late-Maturing and Whole Crop Silage Rice Cultivar 'Mogwoo' (만생종 총체사료용 벼 신품종 '목우')

  • Lee, Sang-Bok;Yang, Chang-Ihn;Lee, Jeom-Ho;Kim, Myeong-Ki;Shin, Young-Seop;Lee, Kyu-Seong;Choi, Yong-Hwan;Jeong, O-Young;Jeon, Yong-Hee;Hong, Ha-Cheol;Kim, Yeon-Gyu;Jung, Kuk Hyun;Jeung, Ji-Ung;Kim, Junhwan;Shon, Ji-Young
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • 'Mogwoo', a new high yield and whole crop silage rice (Oryza sativa L.) cultivar, was developed by the rice breeding team of the National Institute of Crop Science, RDA, Suwon, Korea, from 1999 to 2009, and was released in 2010. It was derived in 1999 from a cross between Dasanbyeo, having a high yield, and Suweon431/IR71190-45-2-1. A promising line, SR25848-C99-1-2-1, selected by the pedigree breeding method, was designated the name of 'Suweon 519' in 2007. This cultivar has about 155 days of growth period from seeding to heading, and is tolerance to lodging, with erect pubescent leaves as well as a long and thick culm. This cultivar has the same number of tillers per hill and higher spikelet numbers per panicle compared to Nokyang. 'Mogwoo' has longer leaves compared with other Tongil-type varieties. This new variety is resistant to grain shattering, leaf blast, bacterial leaf blight, and small brown planthopper. The biomass yield of 'Mogwoo' was 1,956 kg/10a in a regional test over three years. The result shows that 'Mogwoo' is adaptable to central and south-east plain areas of Korea.