Biogeochemical Studies on Tidal Flats in the Kyunggi Bay: Introduction

경기만 부근 갯벌의 생지화학적 연구: 서문

  • Cho, B.C. (School of Earth and Environmental Sciences, Seoul National University) ;
  • Choi, J.K. (Department of Oceanography, Inha University) ;
  • Lee, T.S. (Department of Marine Science, Pusan University) ;
  • An, S. (Department of Marine Science, Pusan University) ;
  • Hyun, J.H. (Marine Microbiology Laboratory, Korea Ocean Research and Development Institute)
  • 조병철 (서울대학교 자연대학 지구환경과학부) ;
  • 최중기 (인하대학교 자연대학 생명해양학부) ;
  • 이동섭 (부산대학교 자연대학 해양과학과) ;
  • 안순모 (부산대학교 자연대학 해양과학과) ;
  • 현정호 (한국해양연구원 해양생물자원연구본부)
  • Published : 2005.02.28

Abstract

Tidal flats have been regarded to carry out transformation and removal of land-derived organic matter, and this purifying capability of organic matter by tidal flats is one of very important reasons for their conservation. However, integral biogeochemical studies on production and decomposition of organic matter by benthic microbes in tidal flats have been absent in Korea, although the information is indispensable to quantification of the purifying capability. Our major goals in this multidisciplinary research were to understand major biogeochemical processes and rates mediated by diverse groups of microbes dominating material cycles in the tidal flats, and to assess the contribution of benthic microbes to removal of organic matter and nutrients in the tidal flats. Our study sites were Ganghwa and Incheon north-port tidal flats that had been regarded as naturally well reserved and organically polluted, respectively. Our research group measured over 3 years primary production, biomass and community structure of primary producers, abundance and production of bacteria, enzyme activities, distribution of protozoa and protozoan grazing rates, rates of denitrification and sulfate reduction, early sediment diagenesis, primary production and respiration based on oxygen microelectrode. We analyzed major features of each biogeochemical process and their interactions. The results are compiled in the following articles in this special issue: An (2005), Hwang and Cho (2005), Mok et at. (2005), Na and Lee (2005), Yang et at. (2005), and Yoo and Choi (2005).

갯벌은 육상기원 유기물을 변환하거나 제거하는 정화능력을 갖고 있다고 여겨져 왔으며, 이러한 정화능이 갯벌을 보전해야 하는 매우 중요한 하나의 근거가 되어왔다. 그러나, 정화능의 정량화에 필수적인 갯벌에서의 유기물 생산과 분해에 관련된 저서 미세 생물에 대한 종합적인 생지화학적 연구는 그 필요성에도 불구하고 국내에서 전무한 상태이었다. 본 연구의 주 목적은 갯벌에서 물질의 순환을 주도하는 다양한 미세 생물에 의한 생지화학적 과정과 속도를 이해하며, 갯벌 미세생물이 갯벌의 유기물 및 영양염을 제거하는 과정에서 기여하는 정도를 추정하고자 함에 있었다. 연구지역으로는 비교적 자연 상태를 잘 보존하고 있는 강화도 갯벌과 유기물 오염이 심하게 진행되고 있는 인천 북항 갯벌을 선정하여, 두 환경의 생지화학적 과정들의 특성을 비교하고자 하였다. 본 연구진은 두 지역의 갯벌에서 박테리아의 유기물 분해에 관련된 주요 변수인 박테리아의 생산력 및 개체수, 효소 활동도, 탈질산화 속도 및 황산염 환원 속도, 그리고 유기물 생산과 관련된 일차생산력, 일차생산자의 생물량 및 군집구조를 측정하였다. 동시에 공극수 내 영양염의 수직 분포로부터 탈질산화 속도를 추정하고, 산소 미세전극을 이용한 일차생산 및 호흡율의 측정, 원생동물의 분포 및 섭식율 등 광범위한 조사를 3년에 걸쳐 실시하여, 각 과정의 주요 특징과 상호 작용들에 대하여 분석하였다. 이들 연구의 일부 결과들을 이번 호에 모아서 싣는다(나와 이, 2005; 목 등, 2005; 안, 2005; 양 등, 2005; 유와 최, 2005; 황과 조, 2005).변수로 동거가족이 2명인 경우를 기준으로 동거가족이 없거나 한명인 경우, 생활수준이 낮을수록 증상 경험이 많았다(p<0.05). 여자의 8가지 부위 중 어느 한군데라도 근골격계 증상을 경험한 유무는 신체비만지수, 주관적 건강상태, 주농사 유형에 따라 차이가 있었다. 즉, 신체비만지수가 높은 군에서, 주관적 건강상태가 나쁠수록, 주농사가 과수원이나 벼농사인 경우에 근골격계 증상 경험률이 높았다(p<0.05). 여자의 어느 한군데라도 근골격계 증상을 경험한 유무를 종속변수로 한 다중 로지스틱 회귀분석 결과, 신체비만지수가 높을수록, 주관적 건강상태가 허약 할수록 증상 경험이 많았고, 주농사가 축산인 경우가 벼농사인 경우보다 증상 경험이 적었다(p<0.05). 남자에 있어서, 근골격계 증상 경험자의 1년 중 증상 발생시기는 8군데 모두에서 농번기가 가장 높았고, 주 치료방법은 투약, 병의원 물리치료, 한방치료 등이었으며, 미치료율은 목부위를 제외하고는 30%가 넘어 높았는데, 엉덩이가 60.0%로 가장 높았다. 여자에 있어서 근골격계 증상 발생시기 역시 농번기가 가장 높았으며, 주 치료방법은 병의원 물리치료, 투약, 한방치료 등 이었다. 이상의 결과 대다수의 농민들이 근골격계 증상을 경험하고 있었으므로 근골격계 증상 경험 실태와 관련요인에 대한 체계적인 연구가 지속적으로 이루어져야 하겠다.-functional team)를 운영함으로써 동시적 엔지니어링(CE) 및 제품 및 공정 디자인의 개발이 제품 개발의 속도를 가속화하고 디자인 품질을 높이며 시장 성공을 보증할 수 있도록 해야 한다.임과 채팅은 긍정적인

Keywords

References

  1. 고철환, 권개경, 최진우, 2001. 경기만 갯벌: 대부 갯벌의 생물(1998년 조사). 한국의 갯벌, pp. 275-299
  2. 권개경, 조한윤, 이홍금, 1998. 대부도 갯벌에서의 종속영양세균, 황산염환원세균 및 세포의 효소활성의 수직분포. 해양연구, 20: 73-80
  3. 권개경, 현정호, 목진숙, 2002. 우리나라 갯벌의 미생물 연구 현황-강화도 갯벌을 중심으로. 황해(서해)와 북해(바덴해)의 갯벌생태학. 한국과학재단-독일연구협회 국제공동연구 사업 심포지움. p. 119-157
  4. 김도희, 양재삼, 2001. 곰소만에서의 오염물질 플러스 및 탈진산화. 한국해양공학회지, 4: 32-41
  5. 김상진, 이건형, 1992. 남해 퇴적토에서 종속영양 세균의 분포 및 세포의 효소 활성력. 한국미생물학회지, 30: 383-390
  6. 김상진, 최성찬, 1992. 남해해역 퇴적토의 탄화수소 분해세균 분포. 한국미생물학회지, 30: 366-370
  7. 나태희, 이동섭, 2005. 공극수 모델로 추정한 강화도 갯벌의 탈질산화 작용. 한국해양학회지 바다 10: 56-68
  8. 노재훈, 최중기, 1998. 펄갯벌 저서 규조류의 이동력이 갖는 생태학적 기능. 해양연구, 20: 179-187
  9. 목진숙, 조혜연, 현정호, 2005. 강화도 남단 갯벌의 혐기성 유기물 분해능과 황산염 환원력 및 저서동물이 이에 미치는 잠재적 영향. 한국해양학회지 바다 10: 38-46
  10. 백근식, 최지혁, 성치남, 2000. 순천만 갯벌 토양의 섬유소 분해능 및 체외효소활성. 한국미생물학회지, 36: 130-150
  11. 심재형, 조병철, 1984. 인천부근 조간대의 저생 규조류 군집. Proc. Call. Natur. Sci., Seoul Nat. Univ., 9(1): 135-150
  12. 안순모, 2005. 강화도 갯벌 퇴적물의 산소요구량과 탈질소화의 계절변화. 한국해양학회지 바다 10: 47-55
  13. 양은진, 최중기, 유만호, 최동한, 조병철, 2005. 강화도 펄 갯벌에서 저서성 원생동물 분포의 시간적 변이와 박테리아 및 미세조류에 대한 포식압. 한국해양학회지 바다 10: 19-30
  14. 오승진, 문창호, 박미옥, 2004. 한국 서해 새만금 갯벌에서 저서 미세조류의 생체량과 군집조성에 대한 HPLC분석. 한수지, 37(3): 215-225
  15. 유재원, 홍재상, 양성렬, 박경, 2002. Box model을 이용한 서해 곰소만 하전 갯벌의 질소 수지. 한국해양학회지 바다 7: 257-266
  16. 유만호, 최중기, 2005. 강화도 장화리 갯벌에서 저서미세조류의 계절적 분포 및 일차생산력. 한국해양학회지 바다 10: 8-18
  17. 이건형, 하영철, 홍순우, 1986. 금강 하구 퇴적토의 이화학적 성질과 종속영양세균의 분포에 관하여. 한국미생물학회지, 24: 308-316
  18. 조병철, 2001. 갯벌에서의 microbial trophic dynamicss와 생지화학적 순환. 연안저서환경평가기술, 과학기술부. pp. 173-182
  19. 최강국, 이건형, 1996. 서천 연안 퇴적토에서 종속영양세균의 분포와 세포의 효소활성간의 관계. 미생물과 산업, 22: 119-126
  20. 최강원, 조영길, 최만식, 이복자, 현정호, 강정원, 정회수, 2000. 자연 정화작용 연구 I: 갯벌과 농지 상층수중 유.무기 원소의 거동에 관한 예비 연구. 한국해양학회지 바다 5: 195-207
  21. 최희선, 1988. A floristic study on benthic dioatoms in Songdo tidal flat, Gyeonggi Bay. 이학석사 논문. 서울대학교. p. 77
  22. 해양수산부, 2001. 갯벌 생태계 조사 및 지속가능한 이용 방안연구
  23. 황청연, 조병철, 2005. 산소 미세전극을 이용한 강화군과 인천 북항 조간대 갯벌의 순 광합성률 측정. 한국해양학회지 바다, 10: 31-37
  24. 현정호, 이홍금, 권개경, 2003. 해양환경의 황산염환원율 조절요인 및 유기물 분해에 있어 황산염 환원의 중요성. 8(2): 210-224
  25. 현정호, 목진숙, 조혜연, 조병철, 최중기, 2004. 하계 강화도 갯벌의 혐기성 유기물 분해능 및 황산염 환원력. 한국습지학회지, 6(1): 117-132
  26. Admirral, W., 1984. The ecological of estuarine sediment-inhabiting diatoms. Prog. Phycol. Res., 3: 269-322
  27. Alongi, D.M., 1991. Flagellates of benthic communities: characteristics and methods of study. In: The biology of free-living het-erotrophic flagellates, edited by Patterson D.J. and J. Larsen, Systematic Association Special Vol. No. 45, Clarendon Press, Oxsford, pp. 57-75
  28. An, S. and S.B. Joye, 1997. An improved chromatographic method to measure nitrogen, oxygen, argon and methane in gas or liquid samples. Mar. Chem., 59: 63-70 https://doi.org/10.1016/S0304-4203(97)00048-0
  29. An, S. and W.S. Gardner, 2002. Dissimilatory nitrate reduction to ammonium (DNRA) as nitroversus enitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Mar. Ecol. Prog. Ser., 237: 41-50 https://doi.org/10.3354/meps237041
  30. An, S., W.S. Gardner and T Kana, 2001. Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometer (MIMS) analysis. App. Environ. Microbiol., 67(3): 1171-1178 https://doi.org/10.1128/AEM.67.3.1171-1178.2001
  31. Aoyama, H., M. Kai and T. Suzuki, 2000. A quantitative evaluation of the water purification function of Kosugaya tidal flat in Ise Bay. Bull. Jap. Soc. Fish. Oceanogr., 64: 1-9
  32. Azam, F. and B.C. Cho, 1987. Bacterial utilization of organic matter in the sea. In: Ecology of Microbial Communities, edited by Fletcher, M., T.R.G. Gray and J.G. Jones, Cambridge University Press. pp. 261-281
  33. Berninger, U-G. and S.S. Epstein, 1995. Vertical distribution of benthic ciliates in response to the oxygen concentration in a intertidal North Sea sediment. Aquat. micro. Ecol., 9: 229-236 https://doi.org/10.3354/ame009229
  34. Boetius, A. and K. Lochte, 1996. Effect of organic enrichments on hydrolytic potentials and growth of bacteria in deep-sea sediments. Mar. Ecol. Prog. Ser., 140: 239-250 https://doi.org/10.3354/meps140239
  35. Brandes, J.A. and A.H. Devol, 1995. A marine isotopic nitrogen budget: Implications for present and past nutrient balances: EOS. 76(3): 134-138
  36. Canfield, D.E., 1993. Organic matter oxidation in marine sediments. In: Interactions of C, N, P and S biogeochemical cycles and global change, edited by Wollast, R., F.T. Mackenzie and L. Chou, Springer-Verlag, Berlin, pp. 333-363
  37. Capone, D.G. and R. Kiene, 1988. Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism, Limnol. Oceanogr., 33: 725-749 https://doi.org/10.4319/lo.1988.33.4_part_2.0725
  38. Colwell R.R. and D.J. Grimes, 2000. Nonculturable microorganisms in the environment. ASM Press. Washington, DC. p. 354
  39. Dietrich, D. and H. Arndt, 2000. Biomass partitioning of benthic microbes in a baltic inlet: relationships between bacteria, algae, heterotrophic flagellates and ciliates. Mar. Biol., 136: 309-322 https://doi.org/10.1007/s002270050689
  40. Drake, L.A., K.H. Choi, A.G.E. Haskell and F.C. Dobbs, 1998. Vertical profiles of virus-like particles and bacteria in the water column and sediments of Chesapeake Bay, USA. Aquat. Microb. Ecol., 16: 17-25 https://doi.org/10.3354/ame016017
  41. Epstein, S.S. and M.P. Shiaris, 1992. Rates of microbenthic and meiobenthic bacteriovory in a temperate muddy tidal flat community. Appl. Environ. Microb., 58: 2426-2431
  42. Epstein, S.S., 1997a. Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities. Microb. Ecol., 34: 188-198 https://doi.org/10.1007/s002489900048
  43. Epstein, S.S., 1997b. Microbial food webs in marine sediments. II. Seasonal changes in trophic interactions in a sandy tidal flat community. Microb. Ecol., 34: 199-209 https://doi.org/10.1007/s002489900049
  44. Epstein, S.S. and J. Rossel, 1995. Enumeration of sandy sediment bacteria: search for optimal protocol. Mar. Ecol. Prog. Ser., 117: 289-298 https://doi.org/10.3354/meps117289
  45. Fabiano, M. and R. Danovaro, 1998. Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the Ross Sea (Antarctica). Appl. Environ. Microbiol., 64: 3838-3845
  46. Fenchel, T., 1969. The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia, 6: 1-182 https://doi.org/10.1080/00785326.1969.10409647
  47. Finlay, B., P. Bannister and J. Stewart, 1979. Temporal variation in benthic ciliates and the application of association analysis. Freshwat. BioI., 9: 45-53 https://doi.org/10.1111/j.1365-2427.1979.tb01485.x
  48. Hondeveld, B.J.M., R.P.M. Bak and F.C. van Duyl, 1992. Bacteriovory by heterotrophic nanoflagellates in marine sediments measured by uptake of fluorescently labeled bacteria. Mar. Ecol. Prog. Ser., 89: 63-71 https://doi.org/10.3354/meps089063
  49. Howarth, R.W., 1993. Microbial processes in salt marsh sediments. In: Aquatic microbiology: An ecological approach, edited by Ford, T.E., Blackwell, Cambridge, pp. 239-259
  50. Hymel, S.N. and C.J. Plante, 1998. Improved method of bacterial enumeration in sandy and deposit-feeder gut sediments using the fluorescent statin 4,6-diarnidino-2-phenylindole (DAPI). Mar. Ecol. Prog. Ser., 173: 299-304 https://doi.org/10.3354/meps173299
  51. Jorgensen, B.B., 1982. Mineralization of organic matter in the seabed-the role of sulphate reduction. Nature, 296: 643-645 https://doi.org/10.1038/296643a0
  52. Kana, T.M., C. Darkangelo, M.D. Hunt, J.B. Oldham, G.E. Bennett, and J.C. Cornwell, 1994. Membrane inlet mass spectrometer for rapid high-precision determination of $N_{2}$, $O_{2}$, and Ar in environmental water samples. Anal Chem, 66(23): 4166-4170 https://doi.org/10.1021/ac00095a009
  53. Kim, D.H. and J.-S. Yang, 2000. Estimation of the self purification in tidal flats of Komso Bay in western sea of Korea, In: Proceedings of the KOSMEE Autumn Annual Meeting, pp. 194-199
  54. Kim, S.J., S.W. Hong, Y. Rhie and S.C. Choi, 1985. Distribution and activity of heterotrophic bacteria in the mudflat of Nakdong River estuary. Kor. Jour. Microbiol., 23: 215-222
  55. King, G.M, 1986. Characterization of $\beta$-glucosidase activity in intertidal marine sediments. Appl. Environ. Microbiol., 51: 373-380
  56. Knowles, R., 1990. Acetylene inhibitions technique: Development, advantage, and potential problems. 1151-1166. In: Denitrification in soils and sediment, edited by Revsbech, N.P. and J. S?ensen, FEMS Symp. No. 56, Plenum Press, pp. 1151-1166
  57. Koike, I. and A. Hattori, 1979. Estimates of denitrification in sediments of Bering Sea shelf. Deep-Sea Res., 26: 409-15 https://doi.org/10.1016/0198-0149(79)90054-2
  58. Kostka, J.E., B. Gribsholt, E. Petrie, D. Dalton, H. Skelton and E. Kristensen, 2002. The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments. Limnol. Oceanogr., 47: 230-240 https://doi.org/10.4319/lo.2002.47.1.0230
  59. Kristensen, E., F.O. Andersen, N. Holmboe, M. Holmer and N. Thongtham, 2000. Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, Thailand. Aquat. Microb. Ecol., 22: 199-213 https://doi.org/10.3354/ame022199
  60. Kuwae, T. and Y. Hosokawa, 1999. Determination of abundance and biovolume of bacteria in sediments by dual staining with 4',6-diamidino-2-phenylindole and acridine orange: relationship to dispersion treatment and sediment characteristics. Appl. Environ. Microbiol., 65: 3407-3412
  61. Kwon, K.K., and J.-G. Je, 2002. Preliminary studies on relationship between reed and bacterial communities in the salt marsh environment of the Namyang Bay, Korea. Ocean and Polar Research 24: 47-53 https://doi.org/10.4217/OPR.2002.24.1.047
  62. Laima, M.J.C., M.F. Girard, F. Vouve, P. Richard, G. Blanchard and D. Gouleau, 1999. Nitrification rates related to sedimentary structures in an Atlantic intertidal mudflat, Marennes-Oleron Bay, France. Mar. Ecol. Prog. Ser., 191: 33-41 https://doi.org/10.3354/meps191033
  63. Lamontagne, M.G. and I. Valiela, 1995. Denitrification measurement by a direct N2 flux method in sediment of Waquoit Bay, MA. Biogeochem., 31(2): 63-83
  64. Lovley, D.R., 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbial. Rev., 55: 259-287
  65. Moriarty, D.J.W. and P.C. Pollard, 1981. DNA synthesis as a measure of bacterial production in seagrass sediments. Mar. Ecol. Prog. Ser., 5: 151-156 https://doi.org/10.3354/meps005151
  66. Mortimer, R.J.G., M.D. Krom, P.G. Watson, P.E. Frickers, J.T. Davey and R.J. Clifton, 1998. Sediment-water exchange of nutrients in the intertidal zone of the Humber estuary, UK. Mar. Pollut. Bull., 37: 261-279
  67. Nielson, L.P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microb. Ecol., 86: 357-362 https://doi.org/10.1111/j.1574-6968.1992.tb04828.x
  68. Nielsen, K., L.P. Nielsen and P. Rasmussen, 1995. Estuarine nitrogen retention independently estimated by the denitrification rate and mass balance methods: a study of Norsminde Fjord, Denmark. Mar. Ecol. Prog. Ser., 119: 275-283 https://doi.org/10.3354/meps119275
  69. Oh, S.H. and C.H. Koh, 1995. Distribution of diatoms in the surficial sediments of the Mankyung Dongjin tidal flat, west coast of Korea (East Yellow Sea). Mar. BioI., 122: 487-496 https://doi.org/10.1007/BF00350883
  70. Pinckney, J. and R.G. Zingmark, 1991. Effects of tidal stage and Sun angles on intertidal benthic microalgal productivity. Mar. Ecol. Prog. Ser., 76: 81-89 https://doi.org/10.3354/meps076081
  71. Reisse, K., 1985. Tidal flat ecology: an experimental approach to species interactions. Berlin. Springer Verlag, p. 191
  72. Schmidt, J. L., Deming J. W., Jumars, P. A., Keil, R. G. 1998. Constancy of bacterial abundance in surficial marine sediments. Limnol. Oceanogr 43: 976-982 https://doi.org/10.4319/lo.1998.43.5.0976
  73. Seitzinger, S.P., 1988. Denitrification in freshwater and coastal marine ecosystem: Ecological and geochemical significance. Limnol. Oceanogr., 33: 702-724 https://doi.org/10.4319/lo.1988.33.4_part_2.0702
  74. Seitzinger, S.P., 1990. Denitrification in aquatic sediments. In: Denitrification in soil and sediment, edited by Revsbech, N.P. and Soensen, J. FEMS Symposium No. 56. Plenum Press, pp. 301-322
  75. Thamdrup, B., 2000. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol., 16: 41-84
  76. Tobin, R.S. and D.H.J. Arthony, 1978. Tritiated thymidine incorporation as a measure of microbial activity in lake sediments. Limnol. Oceanogr., 23: 161-165 https://doi.org/10.4319/lo.1978.23.1.0161
  77. Tso, S.F. and G.L. Taghon, 1997. Enumeration of protozoa and bacteria in muddy sediment. Microb. Ecol., 33: 144-148 https://doi.org/10.1007/s002489900016
  78. You, S.J. and J.G. Kim, 1999. Evaluation on the purification capacity of pollutants in the tidal flat. J. Kor. Fish. Soc., 32: 409-415