DOI QR코드

DOI QR Code

Removal Characteristics of Residual Hydrogen Peroxide (H2O2) according to Application of Peroxone Process in O3/BAC Process

O3/BAC 공정에서 Peroxone 공정 적용에 따른 잔류 과산화수소 제거 특성

  • 염훈식 (부산광역시 상수도사업본부 수질연구소) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 서창동 (부산광역시 상수도사업본부 수질연구소) ;
  • 김상구 (부산광역시 상수도사업본부 수질연구소) ;
  • 류동춘 (부산광역시 상수도사업본부 수질연구소)
  • Received : 2013.05.10
  • Accepted : 2013.11.26
  • Published : 2013.12.30

Abstract

Advanced Oxidation Processes (AOP) have been interested for removing micropollutants in water. Most of water treatment plants (WTPs) located along the lower part of Nakdong River have adopted the $O_3/BAC$ process and have interesting in peroxone process a kind of AOP. This study evaluated the removal characteristics of residual hydrogen peroxide ($H_2O_2$) combining with the biofiltration process in the next BAC process when the hydrogen peroxide is applied for the WTP operating $O_3/BAC$ process. In the experiment, changing the temperature and the concentration of $H_2O_2$ of influent, the biofiltration process showed rapidly dropped the biodegradability when the $H_2O_2$ concentration was increased and lowered water temperature while BAC process maintained relatively stable efficiency. The influent fixed at $20^{\circ}C$ and the concentration of $H_2O_2$ at 300 mg/L was continuously input for 78 hours. Most of the $H_2O_2$ in the influent did not remove at the biofiltration process controlled 5 to 15 minutes EBCT condition after 24~71 hours operating time while BAC process controlled 5 to 15 minutes EBCT showed 38~91% removal efficiency condition after 78 hours operating time. Besides, after 78 hours continuously input experiment, the biomass and activity of attached bacterial on the biofilter and BAC were $6.0{\times}10^4CFU/g$, $0.54mg{\cdot}C/m^3{\cdot}hr$ and $0.4{\times}10^8CFU/g$, $1.42mg{\cdot}C/m^3{\cdot}hr$ respectively. These biomass and activity values were decreased 99% and 72% in biofilter and 68% and 53% in BAC compared with initial condition. The biodegradation rate constant ($k_{bio}$) and half-life ($t_{1/2}$) in BAC were decreased from $1.173min^{-1}$ to $0.183min^{-1}$ and 0.591 min to 3.787 min respectively according to increasing the $H_2O_2$ concentration from 10 mg/L to 300 mg/L at $5^{\circ}C$ water temperature and the $k_{bio}$ and $t_{1/2}$ were $1.510min^{-1}$ to $0.498min^{-1}$ and 0.459 min to 1.392 min at $25^{\circ}C$ water temperature. By increasing the water temperature from $5^{\circ}C$ to $15^{\circ}C$ or $25^{\circ}C$, the $k_{bio}$ were increased 1.1~2.1 times and 1.3~4.4 times. If a water treatment plant operating $O_3/BAC$ process is considering the hydrogen peroxide for the peroxone process, post BAC could effectively decrease the residual $H_2O_2$, moreover, in case of spilling the $H_2O_2$ into the water process line, these spilled $H_2O_2$ concentration can be able to decrease by increasing the EBCT at the BAC process.

수중의 미량 유해물질 제거를 위해 AOP 공정에 대한 관심이 증대되고 있다. 낙동강 하류에 위치한 정수장들은 대부분 $O_3/BAC$ 공정을 채택하여 운전 중에 있으며, AOP 공정의 일종인 peroxone 공정의 적용에 많은 관심을 가지고 있다. 본 연구에서는 $O_3/BAC$ 공정을 운전 중인 정수장에서 과산화수소를 투입할 경우에 후단의 BAC 공정에서의 잔류 과산화수소의 제거 특성을 biofiltration 공정과 함께 평가하였다. 유입수의 수온 및 과산화수소 농도변화 실험에서 biofilteration 공정은 낮은 수온에서 유입수 중의 과산화수소 농도가 증가하면 급격히 생물분해능이 저하된 반면, BAC 공정에서는 비교적 안정적인 효율을 유지하였다. 유입수의 수온을 $20^{\circ}C$, 과산화수소 투입농도를 300 mg/L로 고정하여 78시간 동안 연속으로 투입한 실험에서 biofilteration 공정은 EBCT 5~15분의 경우 운전 24~71시간 후에는 유입된 과산화수소가 거의 제거되지 않았으나, BAC 공정에서는 78시간 후의 과산화수소 제거율이 EBCT 5~15분일 때 38%~91%로 나타났다. 또한, 78시간 동안 연속 투입실험 후의 biofilter와 BAC 부착 박테리아들의 생체량과 활성도는 각각 $6.0{\times}10^4CFU/g$$0.54mg{\cdot}C/m^3{\cdot}hr$$0.4{\times}10^8CFU/g$$1.42mg{\cdot}C/m^3{\cdot}hr$로 나타나 운전초기에 비해 biofilter에서는 생체량과 활성도가 각각 99%와 72% 감소하였으며, BAC의 경우는 각각 68%와 53%의 감소율을 나타내었다. BAC 공정에서 생물분해 속도상수($k_{bio}$)와 반감기($t_{1/2}$)를 조사한 결과, 수온 $5^{\circ}C$에서 과산화수소 농도가 10 mg/L에서 300 mg/L로 증가할수록 $k_{bio}$$1.173min^{-1}$에서 $0.183min^{-1}$으로 감소하였고, $t_{1/2}$은 0.591 min에서 3.787 min으로 증가하였다. 수온 $25^{\circ}C$의 경우 $k_{bio}$$t_{1/2}$$1.510min^{-1}$에서 $0.498min^{-1}$ 및 0.459 min에서 1.392 min으로 나타나 수온 $5^{\circ}C$에 비해 수온이 $15^{\circ}C$$25^{\circ}C$로 상승할 경우 $k_{bio}$는 각각 1.1배~2.1배 및 1,3배~4.4배 정도 증가하였다. $O_3/BAC$ 공정을 운전 중인 정수장에서 peroxone 공정의 적용을 위해 과산화수소 투입을 고려할 경우, 후단의 BAC 공정에서 잔류 과산화수소를 효과적으로 제거 가능하였고, 고농도의 과산화수소 유출사고시에는 BAC 공정의 EBCT를 최대한 증가시켜 운전할 경우 수중의 과산화수소 농도를 최대한 저감시킬 수 있을 것으로 판단된다.

Keywords

References

  1. Bandala, E. R., Pelaez, M. A., Garcia-Lopez, J., Salgado, M. J. and Moeller, G., "Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes," Chem. Eng. Proc., 47, 169-176(2008). https://doi.org/10.1016/j.cep.2007.02.010
  2. Lin, A. Y. C., Yu, T. H. and Lin, C. F., "Pharmaceutical contamination in residual, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan," Chemosphere, 74, 131-141(2008). https://doi.org/10.1016/j.chemosphere.2008.08.027
  3. Esplugas, S., Bila, D. M., Krause, L. G. T. and Dezotti, M., "Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents," J. Hazard. Mater., 149, 631-642(2007). https://doi.org/10.1016/j.jhazmat.2007.07.073
  4. Klavarioti, M., Mantzavinos, D. and Kassinos, D., "Removal of residual pharmaceuticals from aqueous system by advanced oxidation processes," Environ. Int., 35, 402-417(2009). https://doi.org/10.1016/j.envint.2008.07.009
  5. Son, H. J., Choi, Y. I., Bae, S. D. and Jung, C. W., "Removal of 1,4-dioxane in ozone and activated carbon process," J. Kor. Soc. Environ. Eng., 28(12), 1280-1286(2006).
  6. Son, H. J., Kim, S. G., Yeom, H. S. and Choi, J. T., "Evaluation of applicability and economical efficiency of peroxone process for removal of micropollutants in drinking water treatment," J. Kor. Environ. Sci. Intl., 22(7), 905-913(2013). https://doi.org/10.5322/JESI.2013.22.7.905
  7. Nakayama, S., Esaki, K., Namba, K., Taniguchi, N. and Tabata, N., "Improved ozonation in aqueous systems," Ozone Sci. Eng., 1(2), 119-131(1979). https://doi.org/10.1080/01919517908550839
  8. Brunet, R., Bourbigot, M. M. and Dore, M., "Oxidation of organic compounds through the combination ozone-hydrogen peroxide, Ozone Sci. Eng., 6(3), 163-183(1984). https://doi.org/10.1080/01919518408551019
  9. Duguet, J. P., Brodard, E., Dussert, B. and Mallevialle, J., "Improvement in the effectiveness of ozonation of drinking water through the use of hydrogen peroxide," Ozone Sci. Eng., 7, 241-258(1985). https://doi.org/10.1080/01919518508552366
  10. Glaze, W. H., Kang, J. W. and Chapin, D. H., "The chemistry of water treatment processes involving ozone. hydrogen peroxide and ultraviolet radiation," Ozone Sci. Eng., 9(4), 335-352(1987). https://doi.org/10.1080/01919518708552148
  11. Ferguson, D. W., McGuire, M. J., Koch, B., Wolfe, R. L. and Aieta, E. M., "Comparing peroxone and ozone for controlling taste and odor compounds, disinfection by-products, and microorganisms," J. AWWA, 82(4), 181-191(1990).
  12. Roche, P., Volk, C., Carbonnier, F. and Paillard, H., "Water oxidation by ozone/hydrogen peroxide using the 'Ozotest' or 'Peroxotest' methods," Ozone Sci. Eng., 16(2) 135-155(1994). https://doi.org/10.1080/01919519408552418
  13. Marhaba, T. F. and Bengraine, K., "Review of strategies for minimizing bromate formation resulting from drinking water ozonation," Clean Technol. Environ. Policy, 5, 101-112(2003). https://doi.org/10.1007/s10098-002-0177-4
  14. Son, H. J., Yeom, H. S. and Bin, J. H., "Peroxone ($O_3/H_2O_2$) process in drinking water treatment," J. Kor. Soc. Environ. Eng., 32(3), 296-308(2010).
  15. Bader, H., Sturzenegger, V. and Hoigne, J., "Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,Ndiethyl-p-phenyl-enediamine (DPD)," Water Res., 22(9), 1109-1115(1988). https://doi.org/10.1016/0043-1354(88)90005-X
  16. Son, H. J., Park, H. K., Lee, S. A., Jung, E. Y. and Jung, C. W., "The characteristics of microbial community for biological activated carbon in water treatment plant," J. Kor. Soc. Environ. Eng., 27(12), 1311-1320(2005).
  17. APHA, AWWA, WEF, "Heterotrophic plate count," Standard Methods for the Examination of Water and Wastewater, Eaton, A. D., Clesceri, L. S. and Greenberg, A. E. (Eds), APHA, AWWA, WEF, Washington DC, 19th ED, pp. 9-31-9-35(1995).
  18. Fuhrman, J. A. and Azam, F., "Thymidine incorporation as a measure of heterotrophic bacterio-plankton production in marine surface waters: evaluation and field results," Mar. Biol., 66, 109-120(1982). https://doi.org/10.1007/BF00397184
  19. Parsons, T. R., Maita, Y. and Lalli, C. M., A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon, New York(1984).
  20. Bell, R. T., Ahlgren, G. M. and Ahlgren, I., "Estimating bacterioplankton production by the [$^3H$]thymidine incorporation in a eutrophic Swedish Lake," Appl. Environ. Microbiol., 45, 1709-1721(1983).
  21. Baldry, M. G. C., "The bactericidal, fungicidal and sporicidal properties of hydrogen peroxide and peracetic acid," J. Appl. Bacteriol., 54(3), 417-423(1983). https://doi.org/10.1111/j.1365-2672.1983.tb02637.x
  22. Bae, S. D., Son, H. J. and Jung, C. W., "Removal characteristics of chloral hydrate by activated carbon and biofiltration," J. Kor. Soc. Environ. Eng., 30(2), 218-224(2008).
  23. Seo, I. S., Son, H. J., Choi, Y. I., Ahn, W. S. and Park, C. G., "Removal characteristics of nitrogeneous organic chlorination disinfection by-products by activated carbon and biofiltration," J. Kor. Soc. Environ. Eng., 29(2), 184-191(2007).
  24. Ibrahim, M. and Schlegel, H. G., "Oxygen supply to bacterial suspensions of high cell densities by hydrogen peroxide," Biotechnol. Bioengr., 22(9), 1877-1894(1980). https://doi.org/10.1002/bit.260220908
  25. Son, H. J., Jung, C. W. and Kim, S. H., "Removal of bisphenol- A using rotating photocatalytic oxidation drum reactor (RPODR)," Environ. Eng. Res., 13(4), 197-202(2008). https://doi.org/10.4491/eer.2008.13.4.197