• 제목/요약/키워드: Backfill Type

검색결과 70건 처리시간 0.024초

L형 케이슨 안벽 구조물의 내진성 평가를 위한 진동대 시험 (Shaking Table Tests for Evaluation of Seismic Performance of L-type Caisson Quay Walls)

  • 한진태;황재익;이용재;김명모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.148-156
    • /
    • 2003
  • Shaking table tests and pseudo-static analysis were performed, in this study, on newly-designed aseismatic L-type caisson quay walls, which were constructed by extending the bottom plate of gravity quay walls into the backfill soil. The L-type quay walls are expected to give economical benefits by reducing the cross-sectional area of the wall while maintaining its aseismatic efficiency as much as the classical caisson gravity quay wall. To confirm the effectiveness of the L-type structure, the geometry of L-type quay walls were varied for shaking table tests. And, to verify the influence of backfill soils on the seismic behavior of quay walls, additional shaking table tests were performed on the L-type quay wall after the backfill soils were replaced by gravels and light materials. As a result, it was found that L-type caisson quay walls are good earthquake resistant structures but increasing the length of bottom plate did not proportionally increase the effectiveness of the structure in its aseismatic performance. Replacing the backfill soils by the gravels and light materials, contrary to our expectation, was not an effective measure in improving the seismic performance of L-type caisson quay wall.

  • PDF

뒷채움 지반에 비정착식 띠보강재를 설치한 역T형 옹벽의 현장 계측 (Field Measurements of Cantilever Wall with Unattached Strips in the Backfill)

  • 이종구;이만수;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.87-94
    • /
    • 2000
  • This paper concerns the distribution of earth pressures on a cantilever wall with unattached reinforcements in the backfill. This type of walls is different from the existing reinforced earth walls in that unattached reinforcements are placed in the backfill of rigid retaining wall such as gravity wall and cantilever wall, instead of connecting reinforcements to the wall segments. Two large-scale prototype tests have been carried out with a 4m high cantilever wall; one with unreinforced backfill, the other with unattached strips in the backfill. The reinforcing effect of unattached strips are discussed based on the earth pressure distribution measured in two large-scale prototype tests. Also, the comparison between measured and predicted earth pressure on a wall with unattached strips are discussed herein to confirm the validity of analytical prediction.

  • PDF

매설배관의 파손 확률 모델 (Failure Probability Model of Buried Pipeline)

  • 이억섭;편장식
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.116-123
    • /
    • 2001
  • A failure probability model based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as nearby cavity, backfill, load cycle and corrosion on failure probability of the buried pipes are systematically investigated. The location of cavity is found to affect failure probability of buried pipeline within a certain limit. It is noted that the flexibility of backfill plays a great role to change the failure probability of buried pipeline. Furthermore, the corrosion gives less effects than other boundary conditions such as cavity, load as cavity, load cycle, and backfill to the failure probability of buried pipeline.

  • PDF

지반함몰 저감을 위한 하수관로 뒤채움재 개발 및 현장적용성 평가 (Development and Application of Backfill Material for Reducing Ground Subsidence)

  • 이대영;김동민;유용선;한진규
    • 한국지반신소재학회논문집
    • /
    • 제14권4호
    • /
    • pp.147-158
    • /
    • 2015
  • 본 연구에서는 하수관로 손상을 예방하고 다짐불량으로 인한 지반침하를 방지할 수 있는 하수관로 뒤채움재를 개발하였다. CA 치환율, 촉진제 종류 및 치환율, 물-재료비 등에 대한 실내실험을 수행하였는데, 재령 4시간 압축강도는 W/M 70% 이하에서 0.55~0.64MPa, W/B 80% 이상에서는 0.20MPa로 나타나 국외 유동화토의 압축강도 기준인 0.13MPa을 만족하는 것으로 나타났다. 현장 시험시공에서는 얼음블록을 이용하여 인위적으로 지중에 공동을 생성시키고 하수관로 변형을 유도하였다. 기존의 모래다짐 방법과 개발 뒤채움재의 성능을 비교 평가하였는데, 모래다짐 구간의 횡단면 발생 침하량은 최대 23.4cm, 종단면은 최대 27cm 발생하였으나, 뒤채움재 시공 구간에서는 횡단면에서 최대 0.01cm가 발생하였고, 종단면은 시간이 경과하여도 침하량의 변화가 나타나지 않았다.

섬유혼합 보강토의 전단강도특성 및 마찰특성 연구 (A Study on Shear strength and Friction Properties of Fiber-Mixed Soil as Backfill Material in Reinforced Earth Wall)

  • 조삼덕;김진만;안주환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.651-658
    • /
    • 2002
  • A series of experimental study are performed to evaluate the shear strength and friction properties of fiber-mixed soil as backfill material in reinforced earth wall. In order to evaluate the properties of shear strength the big-size direct shear tests are carried out and on the friction properties, the shear friction tests and the pull-out tests are performed. In the results, when the mixed ratio of the net type fiber is 0.2%, the reinforcement effect was better than the others. Also the reinforcement effect of the net type fiber was larger than that of the line type fiber.

  • PDF

Effects of interface angles on properties of rock-cemented coal gangue-fly ash backfill bi-materials

  • Yin, Da W.;Chen, Shao J.;Sun, Xi Z.;Jiang, Ning
    • Geomechanics and Engineering
    • /
    • 제24권1호
    • /
    • pp.81-89
    • /
    • 2021
  • Uniaxial compression tests were conducted on sandstone-CGFB composite samples with different interface angles, and their strength, acoustic emission (AE), and failure characteristics were investigated. Three macro-failure patterns were identified: the splitting failure accompanied by local spalling failure in CGFB (Type-I), the mixed failure with small sliding failure along with the interface and Type-I failure (Type-II), and the sliding failure along with the interface (Type-III). With an increase of interface angle β measured horizontally, the macro-failure pattern changed from Type-I to Type-II, and then to Type-III, and the uniaxial compressive strength and elastic modulus generally decreased. Due to the small sliding failure along with the interface in the composite sample with β of 45°, AE events underwent fluctuations in peak values at the later post-peak failure stage. The composite samples with β of 60° occurred Type-III failure before the completion of initial compaction stage, and the post-peak stress-time curve initially exhibited a slow decrease, followed by a steep linear drop with peaks in AE events.

개착식 터널의 라이닝에 작용하는 토압경감대책에 관한 실험적 연구 (An experimental study on the reduction method of earth pressure acting on the cut-and-cover tunnel lining)

  • 김상윤;임종철;박이근;페르디난드 이 바우티스타
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.952-957
    • /
    • 2004
  • Cut and Cover Method is generally used in shallow tunnels and tunnel entrances with thin soil cover. In this type of cons0truction, backfilling is considered to be the most important process. In this process even though the backfill material is thoroughly compacted, compaction and self-weight due to vehicular vibration and pressure exerted by the soil cause the backfill material to undergo self-compression which leads to settlement. The settlement of the backfill material subjects the tunnel lining under excessive earth pressure which cause cracking and deformation. In the model test performed installation of geotextile on the sides and top of the tunnel was able to reduce the earth pressure acting on the tunnel lining.

  • PDF

AN ANALYSIS OF THE THERMAL AND MECHANICAL BEHAVIOR OF ENGINEERED BARRIERS IN A HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY

  • Kwon, S.;Cho, W.J.;Lee, J.O.
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.41-52
    • /
    • 2013
  • Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high-level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.

2종류 또는 3종류의 흙으로 뒷채움이 구성될 경우의 정적 및 동적 수평주동토압합력 예측 (A Prediction of the Static and Dynamic Horizontal Active Thrusts Exerted by a Backfill Consisting of Two or Three Layers of Different Properties)

  • 김홍택;강인규
    • 대한토목학회논문집
    • /
    • 제11권2호
    • /
    • pp.65-76
    • /
    • 1991
  • 본 연구에서는, 서로 다른 토질정수를 지닌 2종류 또는 3종류의 흙으로 뒷채움이 구성되는 다양한 경우에, 내진설계를 포함한 실제의 옹벽 설계에서 요구되는 토압예측을 위한 시도가 이루어 졌다. 이를 위해, Mononobe-Okabe해석법 및 secant방법이 이용되었다. 제시된 해석방법을 토대로 2종류의 흙으로 뒷채움이 구성되는 경우에 효율적인 구성형태에 관련된 분석이 이루어 졌다. 아울러 2종류 또는 3종류의 흙으로 뒷채움이 구성된 설계예를 통해, 어느 특정층의 토질정수를 토대로 토압예측이 이루어지는 경우에 예상되는 문제점 분석이 이루어 졌다.

  • PDF

Acceleration data and shape change characteristics of a gravity quay wall according to inclination condition grades

  • Su-Kyeong Geum;Jong-Han Lee;Dohyoung Shin;Jiyoung Min
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.591-600
    • /
    • 2024
  • This study investigated the acceleration response and shape change characteristics of a gravity quay wall according to the magnitude of the applied acceleration. The quay wall was defined as a port facility damaged by the Kobe earthquake. Four experimental scenarios were established based on the inclination condition grades, considered to be a significant defect factor in the quay wall. Then, the shaking table test was conducted using scaled-down quay wall models constructed per each scenario. The ground acceleration was gradually increased from the peak ground acceleration (PGA) of 0.1 g to 0.7 g. After each ground acceleration test, acceleration installed on the wall and backfill ground and inclination on the top of the wall were measured to assess the amplification of peak response acceleration and maximum response amplitude and the change in the inclination of the quay wall. This study also analyzed the separation of the quay wall from the backfill and the crack pattern of the backfill ground according to PGA values and inclination condition grades. The result of this study shows that response acceleration could provide a reasonable prediction for the changes in the inclination of the quay wall and the crack generation and propagation on the backfill from a current inclination condition grade.