Browse > Article
http://dx.doi.org/10.12989/gae.2021.24.1.081

Effects of interface angles on properties of rock-cemented coal gangue-fly ash backfill bi-materials  

Yin, Da W. (State Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology)
Chen, Shao J. (State Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology)
Sun, Xi Z. (College of Civil Engineering and Architecture, Linyi University)
Jiang, Ning (State Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology)
Publication Information
Geomechanics and Engineering / v.24, no.1, 2021 , pp. 81-89 More about this Journal
Abstract
Uniaxial compression tests were conducted on sandstone-CGFB composite samples with different interface angles, and their strength, acoustic emission (AE), and failure characteristics were investigated. Three macro-failure patterns were identified: the splitting failure accompanied by local spalling failure in CGFB (Type-I), the mixed failure with small sliding failure along with the interface and Type-I failure (Type-II), and the sliding failure along with the interface (Type-III). With an increase of interface angle β measured horizontally, the macro-failure pattern changed from Type-I to Type-II, and then to Type-III, and the uniaxial compressive strength and elastic modulus generally decreased. Due to the small sliding failure along with the interface in the composite sample with β of 45°, AE events underwent fluctuations in peak values at the later post-peak failure stage. The composite samples with β of 60° occurred Type-III failure before the completion of initial compaction stage, and the post-peak stress-time curve initially exhibited a slow decrease, followed by a steep linear drop with peaks in AE events.
Keywords
rock-cemented coal gangue-fly ash backfill bi-materials; interface angle; strength characteristics; failure mechanism; uniaxial loading;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ammirati, L., Mondillo, N., Rodas, R.A., Sellers, C. and Martire, D. (2020), "Monitoring land surface deformation associated with gold artisanal mining in the Zaruma City (Ecuador)", Remote Sens., 12(13), 2135. https://doi.org/10.3390/rs12132135.   DOI
2 Bull, A.J. and Fall, M. (2020), "Curing temperature dependency of the release of arsenic from cemented paste backfill made with Portland cement", J. Environ. Manage., 269, 110772. https://doi.org/10.1016/j.jenvman.2020.110772.   DOI
3 Cao, S., Yilmaz, E. and Song, W.D. (2019), "Fiber type effect on strength, toughness and microstructure of early age cemented tailings backfill", Constr. Build. Mater., 223, 44-54. https://doi.org/10.1016/j.conbuildmat.2019.06.221.   DOI
4 Chang, X., Lu, J.Y., Wang, S.Y. and Wang, S.R. (2018), "Mechanical performances of rock-concrete bi-material disks under diametrical compression", Int. J. Rock Mech. Min. Sci., 104, 71-77. https://doi.org/10.1016/j.ijrmms.2018.02.008.   DOI
5 Chen, S.J., Liu, X.Y., Han, Y., Guo, Y.H. and Ren, K.Q. (2016), "Experimental study of creep hardening characteristic and mechanism of filling paste", Chin. J. Rock Mech. Eng., 35(3), 570-578 (In Chinese). https://doi.org/10.13722/j.cnki.jrme.2015.1228.   DOI
6 Chen, S.J., Yin, D.W., Jiang, N., Wang, F. and Guo, W.J. (2019a), "Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer", Geomech. Eng., 17(4), 333-342. https://doi.org/10.12989/gae.2019.17.4.333.   DOI
7 Chen, S.J., Yin, D.W., Jiang, N., Wang, F. and Zhao, Z.H. (2019b), "Mechanical properties of oil shale-coal composite samples", Int. J. Rock Mech. Min. Sci., 123, 104120. https://doi.org/ 10.1016/j.ijrmms.2019.104120.   DOI
8 Cui, B.Q., Liu, Y., Guo, H., Liu, Z.X. and Li, Y. (2018), "Experimental study on the durability of fly ash-based filling paste in environments with different concentrations of sulfates", Adv. Mater. Sci. Eng., 4315345. https://doi.org/10.1155/2018/4315345.   DOI
9 Du, X.J., Feng, G.R., Zhang, Y.J., Wang, Z.H., Guo, Y.X. and Qi, T.Y. (2019), "Bearing mechanism and stability monitoring of cemented gangue-fly ash backfill column with stirrups in partial backfill engineering", Eng. Struct., 188, 603-612. https://doi.org/10.1016/j.engstruct.2019.03.061.   DOI
10 Ercikdi, B., Kesimal, A., Cihangir, F., Deveci, H. and Alp, I. (2009), "Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage", Cement Concrete Compos., 31(4), 268-274. https://doi.org/10.1016/j.cemconcomp.2009.01.008.   DOI
11 Pan, H.Y., Yin, D.W., Jiang, N. and Xia, Z.G. (2020), "Crack initiation behaviors of granite specimens containing crossing-double-flaws with different lengths under uniaxial loading", Adv. Civ. Eng., 8871335. https://doi.org/10.1155/2020/8871335.   DOI
12 Mbonimpa, M., Kwizera, P. and Belem, T. (2019), "Mine backfilling in the permafrost, part II: Effect of declining curing temperature on the short-term unconfined compressive strength of cemented paste backfills", Minerals, 9(3), 172. https://doi.org/ 10.3390/min9030172.   DOI
13 Mohammadi, M. and Tavakoli, H. (2015), "Comparing the generalized Hoek-Brown and Mohr-Coulomb failure criteria for stress analysis on the rocks failure plane", Geomech. Eng., 9(1)115-124. https://doi.org/10.12989/gae.2015.9.1.115.   DOI
14 Ozdogan, M.V. and Deliormanli, A.H. (2020), "Determination of possible failure surfaces in an open-pit slope caused by underground production", B. Geofis. Teor. Appl., 61(2), 199-218. https://doi.org/10.4430/bgta0305.   DOI
15 Park, J.H., Edraki, M., Mulligan, D. and Jang, H.S. (2014), "The application of coal combustion by-products in mine site rehabilitation", J. Clean. Prod., 84, 761-772. https://doi.org/10.1016/j.jclepro.2014.01.049.   DOI
16 Qi, T.Y., Feng, G.R., Zhang, Y.J., Guo, J. and Guo, Y.X. (2015), "Effects of fly ash content on properties of cement paste backfilling", J. Residuals Sci. Technol., 12(3), 133-141.   DOI
17 Sivakugan, N., Rankine, R.M., Rankine, K.J. and Rankine, K.S. (2006), "Geotechnical considerations in mine backfilling in Australia", J. Clean. Prod., 14(12-13), 1168-1175. https://doi.org/10.1016/j.jclepro.2004.06.007.   DOI
18 Ren, A., Feng, G.R., Guo, Y.X., Qi, T.Y., Guo, J., Zhang, M., Kang, L.X., Han, Y.L. and Zhang, P.L. (2014), "Influence on performance of coal mine filling paste with fly ash", J. China Coal Soc., 39(12), 2374-2380. https://doi.org/10.jccs.2013.1747.   DOI
19 Ren, F.Q., Zhu, C. and He, M.C. (2010), "Moment tensor analysis of acoustic emissions for cracking mechanisms during schist strain burst", Rock Mech. Rock Eng., 53(1), 153-170. https://doi.org/10.1007/s00603-019-01897-3.   DOI
20 Scigala, R. and Szafulera, K. (2020), "Linear discontinuous deformations created on the surface as an effect of underground mining and local geological conditions-case study", B. Eng. Geol. Environ., 79(4), 2059-2068. https://doi.org/10.1007/s10064-019-01681-1.   DOI
21 Strzalkowski, P. and Szafulera, K. (2020), "Occurrence of linear discontinuous deformations in Upper Silesia (Poland) in conditions of intensive mining extraction-case study", Energies, 13(8), 1897. https://doi.org/10.3390/en13081897.   DOI
22 Sujatha, V. and Kishen, J.M.C. (2003), "Energy release rate due to friction at bimaterial interface in dams", J. Eng. Mech., 129(7), 793-800. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:7(793).   DOI
23 Sun, Q., Cai, C., Zhang, S.K., Tian, S., Li, B., Xia, Y.J. and Sun, Q.W. (2019), "Study of localized deformation in geopolymer cemented coal gangue-fly ash backfill based on the digital speckle correlation method", Constr. Build. Mater., 215, 21-331. https://doi.org/10.1016/j.conbuildmat.2019.04.208.   DOI
24 Xu, J.L., Xuan, D.Y., Zhu, W.B., Wang, X.Z., Wang, B.L. and Teng, H. (2015), "Study and application of coal mining with partial backfilling", J. China Coal Soc., 40(6), 1303-1312 (In Chinese). https://doi.org/10.13225/j.cnki.jccs.2015.3055.   DOI
25 Tan, Y.L., Ma, Q., Zhao, Z.H., Gu, Q.H., Fan, D.Y., Song, S.L. and Huang, D.M. (2019), "Cooperative bearing behaviors of roadside support and surrounding rocks along gob-side", Geomech. Eng., 18(4), 439-448. https://doi.org/10.12989/gae.2019.18.4.439.   DOI
26 Tichavsky, R., Jirankova, E. and Fabianova, A. (2020), "Dating of mining-induced subsidence based on a combination of dendrogeomorphic methods and in situ monitoring", Eng. Geol., 272, 105650. https://doi.org/10.1016/j.enggeo.2020.105650.   DOI
27 Wang, C.X., Shen, B.T., Chen, J.T., Tong, W.X., Jiang, Z., Liu, Y. and Li, Y.Y. (2020), "Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation", Geomech. Eng., 20(6), 485-495. https://doi.org/10.12989/gae.2020.20.6.485.   DOI
28 Wang, Y.B, Yin, D.W., Chen, S.J. Zhang, L.B., Liu, D.Y. and Sun, Y.H. (2020), "Experimental study on properties of rockcemented coal gangue-fly ash backfill bimaterials with different coal gangue particle sizes", Adv. Civ. Eng., 8820330. https://doi.org/10.1155/2020/8820330.   DOI
29 Wang, Z.C., Wang, Z.H. and Zhao, W.T. (2018), "Microscopic pore and filling performance of coal gangue cementitious paste", J. Wuhan Univ. Technol. Mater. Sci., 33(2), 427-430. https://doi.org/10.1007/s11595-018-1840-9.   DOI
30 Wu, D., Hou, Y.B., Deng, T.F., Chen, Y.Z. and Zhao, X.L. (2017), "Thermal, hydraulic and mechanical performances of cemented coal gangue-fly ash backfill", Int. J. Miner. Process., 162, 12-18. https://doi.org/10.1016/j.minpro.2017.03.001.   DOI
31 Yin, D.W., Chen, S.J., Ge, Y. and Liu, R. (2020), "Mechanical properties of rock-coal bi-material samples with different lithologies under uniaxial loading", J. Mater. Res. Technol., 2021, 10, 322-338. https://doi.org/10.1016/j.jmrt.2020.12.010.   DOI
32 Yin, D.W., Chen, S.J., Xing, W.B., Huang, D.M. and Liu, X.Q. (2018), "Experimental study on mechanical behavior of roofcoal pillar structure body under different loading rates", J. China Coal Soc., 43(5), 1249-1257 (In Chinese). https://doi.org/10.13225/j.cnki.jccs.2017.1091.   DOI
33 Zhu, X.J., Guo, G.L., Liu, H., Chen, T. and Yang, X.Y. (2019), "Experimental research on strata movement characteristics of backfill-strip mining using similar material modeling", B. Eng. Geol. Environ., 78(4), 2151-2167. https://doi.org/10.1007/s10064-018-1301-y.   DOI
34 Zhang, Q.L. and Wang, X.M. (2007), "Performance of cemented coal gangue backfill", J. Cent. South Univ. Technol., 14(2), 216-219. https://doi.org/10.1007/s11771-007-0043-y.   DOI
35 Zhang, X.G., Lin, J., Liu, J.X., Li, F. and Pang, Z.Z. (2017), "Investigation of hydraulic-mechanical properties of paste backfill containing coal gangue-fly ash and its application in an underground coal mine", Energies, 10(9), 1309. https://doi.org/ 10.3390/en10091309.   DOI
36 Zhao, T.B., Guo, W.Y., Liu, C.P. and Zhao, G.M. (2016), "Failure characteristics of combined coal-rock with different interfacial angles", Geomech. Eng., 11(3), 345-359. https://doi.org/10.12989/gae.2016.11.3.345.   DOI
37 Zhong, H., Ooi, E.T., Song, C.M., Ding, T., Lin, G. and Li, H.J. (2014), "Experimental and numerical study of the dependency of interface fracture in concrete-rock specimens on mode mixity", Eng. Fract. Mech., 124, 287-309. https://doi.org/10.1016/j.engfracmech.2014.04.030.   DOI
38 Zhu, W.B., Xu, J.M., Xu, J.L., Chen, D.Y. and Shi, J.X. (2017), "Pier-column backfill mining technology for controlling surface subsidence", Int. J. Rock Mech. Min. Sci., 96, 58-65. https://doi.org/10.1016/j.ijrmms.2017.04.014.   DOI
39 Fishman, Y.A. (2008), "Features of shear failure of brittle materials and concrete structures on rock foundations", Int. J. Rock Mech. Min. Sci., 45(6), 976-992. https://doi.org/10.1016/j.ijrmms.2007.09.011.   DOI
40 Feng, G.R., Du, X.J. and Zhang, Y.J. (2019), "Optical-acousticstress' responses in failure progress of cemented gangue-fly ash backfill material under uniaxial compression", Nondestruct. Test Eval., 34(2), 135-146. https://doi.org/10.1080/10589759.2019.1576175.   DOI
41 Fishman, Y.A. (2009), "Stability of concrete retaining structures and their interface with rock foundations", Int. J. Rock Mech. Min. Sci., 46(6), 957-966. https://doi.org/10.1016/j.ijrmms.2009.05.006.   DOI
42 Huang, B.X. and Liu, J.W. (2013), "The effect of loading rate on the behavior of samples composed of coal and rock", Int. J. Rock Mech. Min. Sci., 61, 23-30. https://doi.org/10.1016/j.ijrmms.2013.02.002.   DOI
43 Kaliyavaradhan, S.K., Ling, T.C., Guo, M.Z. and Mo, K.H. (2019), "Waste resources recycling in controlled low-strength material (CLSM): A critical review on plastic properties", J. Environ. Manage., 241, 383-396. https://doi.org/10.1016/j.jenvman.2019.03.017.   DOI
44 Liang, P., Gao, Y.T., Zhou, Y., Zhu C. and Sun, Y.H., (2020), "Solution for surrounding rock of strain-softening considering confining pressure-dependent Young's modulus and nonlinear dilatancy", Geomech. Eng., 22(4), 277-290. https://doi.org/10.12989/gae.2020.22.4.277.   DOI
45 Liu, Y., Lu, Y., Wang, C.X., Cui, B.Q., Guo, H., Li, H. and Guo, Y.L, (2018), "Effect of sulfate mine water on the durability of filling paste", Int. J. Green Energy, 15(13), 864-873. https://doi.org/10.1080/15435075.2018.1529582.   DOI