DOI QR코드

DOI QR Code

Development and Application of Backfill Material for Reducing Ground Subsidence

지반함몰 저감을 위한 하수관로 뒤채움재 개발 및 현장적용성 평가

  • Lee, Dae-Young (Geotechnical Engineering Research Division, Korea Institue of Civil Engineering and Building Technology) ;
  • Kim, Dong-Min (Geotechnical Engineering Research Division, Korea Institue of Civil Engineering and Building Technology) ;
  • Ryu, Yong-Sun (Chemius Korea Co., Ltd.) ;
  • Han, Jin-Gyu (Chemius Korea Co., Ltd.)
  • Received : 2015.11.22
  • Accepted : 2015.12.23
  • Published : 2015.12.30

Abstract

In this study, sewer backfill material was developed to prevent sewer damage and ground subsidence. Laboratory test was performed in the field of CA replacement ratio, accelerator type and replacement ratio and W/M. The compression strength of backfill material was 0.55~0.64MPa below in W/M 70% and 0.20MPa over W/B 80%. Ice block was used to simulate the ground cavity and subsidence caused by sewer damage in application study. The existing sand compaction and the new backfill material was comparative estimated in field. The ground settlement of cross section was 23.4cm and that of longitudinal section was 27cm in sand compaction section, but the ground had not sunk in backfill material section.

본 연구에서는 하수관로 손상을 예방하고 다짐불량으로 인한 지반침하를 방지할 수 있는 하수관로 뒤채움재를 개발하였다. CA 치환율, 촉진제 종류 및 치환율, 물-재료비 등에 대한 실내실험을 수행하였는데, 재령 4시간 압축강도는 W/M 70% 이하에서 0.55~0.64MPa, W/B 80% 이상에서는 0.20MPa로 나타나 국외 유동화토의 압축강도 기준인 0.13MPa을 만족하는 것으로 나타났다. 현장 시험시공에서는 얼음블록을 이용하여 인위적으로 지중에 공동을 생성시키고 하수관로 변형을 유도하였다. 기존의 모래다짐 방법과 개발 뒤채움재의 성능을 비교 평가하였는데, 모래다짐 구간의 횡단면 발생 침하량은 최대 23.4cm, 종단면은 최대 27cm 발생하였으나, 뒤채움재 시공 구간에서는 횡단면에서 최대 0.01cm가 발생하였고, 종단면은 시간이 경과하여도 침하량의 변화가 나타나지 않았다.

Keywords

References

  1. ACI Committee 229 (1994), CLSM, ACI R-94.
  2. Chae, D. H., Kim, K. O., Shin, H. Y. and Cho, W. J. (2014), "Dynamic Characteristics of Liquidity Filling Materials Mixed with Reclaimed Ash", Journal of the Korean Geo-Environmental Society, Vol.15, No.4, pp.5-11.
  3. Cho, D. H. (2005), "Application of liquefied stabilization method using in-situ soil", Journal of the Korean Society of Civil Engineers, Vol.53, No.10, pp.119-125.
  4. Cho, D. H., Han, S. J., Kim, J. Y. and Kim, S. S. (2007), "A experimented study on the estimation of optimum mixing ratio and the behavior for backfill by the flowable material using surplus soil", Journal of the Korean Society of Civil Engineers, Vol.27, No.3, pp.175-184.
  5. Duncan, J. M. and Seed, R. B. (1986), "Compaction-induced Earth Pressures under K0-conditions", Journal of Geotechnical Engineering, Vol.112, No.1, pp.1-21. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:1(1)
  6. Kong, J. Y., Kang, H. N. and Chun, B. S. (2010), "Unconfined compressive strength and flow in controlled low strength materials made with coal ash", Journal of the Korean Geo-Environmental Society, Vol.26, No.1, pp.75-83.
  7. Lee, K. H., Kim, J. D., Hyun, S. C., Song, Y. S. and Lee, B. S. (2007), "Deformation behavior of underground pipe with controlled low strength materials with marine dredged soil", Journal of the Korea Society of Hazard Mitigation, Vol.7, No.5, pp.129-137.
  8. Ryu, Y. S., Han, J. G., Chae, W. R., Koo, J. S. and Lee, D. Y. (2015), "Development of Rapid Hardening Backfill Material for Reducing Ground Subsidence", Journal of Korean Geosynthetics Society, Vol.14, No.3, pp.13-20. https://doi.org/10.12814/jkgss.2015.14.3.013
  9. Seo, D. W., Kim, H. Y., Kim, K. M. and Chun, B. S. (2010), "Characteristics of plasticizer lightweight foamed concrete according to changes of mixing ratio", Journal of the Korean Geo-Environmental Society, Vol.11, No.4, pp.33-42.
  10. Seoul city (2014), Investigation of cause for road sinkage in Seoul city, Seoul, Korea.
  11. Thiansky, A. B. (1999), Sinkholes, West-Central Florida, U.S. Geological Survey, Tempa, Florida, pp.121-140.
  12. Tokyo Electric Power Company R&D Center (1996), Backfilling Method Using Slurry Material, Tokyo, Japan, pp.152-174.
  13. Won, J. P. and Lee, Y. S. (2001), "Properties of controlled lowstrength material containing bottom ash", Journal of the Korea Concrete Institute, Vol.13, No.3, pp.294-300. https://doi.org/10.22636/JKCI.2001.13.3.294

Cited by

  1. Understanding of Subsurface Cavity Mechanism due to the Deterioration of Buried Pipe vol.32, pp.12, 2016, https://doi.org/10.7843/kgs.2016.32.12.33
  2. 지반공동 긴급복구 재료의 팽창 및 강도특성에 관한 연구 vol.16, pp.2, 2015, https://doi.org/10.12814/jkgss.2017.16.2.131
  3. 노후 상하수관 주변지반의 소규모 지하공동 형상 특성을 고려한 수치해석에 관한 연구 vol.20, pp.2, 2015, https://doi.org/10.9711/ktaj.2018.20.2.287
  4. 제지애쉬가 적용된 CLSM의 일축압축강도 특성에 관한 연구 vol.18, pp.4, 2019, https://doi.org/10.12814/jkgss.2019.18.4.253
  5. 지반침하로 인한 지하공동 복구재료의 현장적용성 평가 vol.21, pp.3, 2015, https://doi.org/10.14481/jkges.2020.21.3.5