• Title/Summary/Keyword: Bacillus subtilis S10

Search Result 607, Processing Time 0.027 seconds

Mixture of Edwardsiella tarda specific Bacteriophage and Bacillus subtilis KM-1enhanced bactericidal activity against Edwardsiella tarda (Edwardsiella tarda의 특이 Bacteriophage와 Bacillus subtilis KM-1혼합액이 Edwardsiella tarda 에 미치는 항균효과)

  • Baek, Min Suk;Hwang, Yo Sep;Choi, Sanghoon
    • Journal of fish pathology
    • /
    • v.26 no.3
    • /
    • pp.185-191
    • /
    • 2013
  • The present study was performed to investigate an antibacterial activity of specific bacteriophage (phage) and Bacillus subtilis KM-1 (B. subtilis) mixture against Edwardsiella tarda (E. tarda). An appropriate number of phage showing the most effective antibacterial activity was $2{\times}10^5$ PFU/ml with $1{\times}10^7$ CFU/ml of B. subtilis 36 h post incubation. On the other hand, B. subtilis showed a dose dependant manner in inducing antibacterial activity in the presence of phage ($2{\times}10^5$ PFU/ml). The phage and B. subtilis mixture showed higher antibacterial activity against E. tarda than phage or B. subtilis only. These results suggest that the phage and B. subtilis mixture could be utilized as an alternative to antibiotics in the control of fish diseases caused by E. tarda.

Comparison of the ${\sigma}^B$-Dependent General Stress Response between Bacillus subtilis and Listeria monocytogenes (Bacillus subtilis와 Listeria monocytogenes의 일반 스트레스반응의 비교)

  • Shin, Ji-Hyun
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.10-16
    • /
    • 2009
  • A diverse range of stresses such as heat, cold, salt, ethanol, oxygen starvation or nutrient starvation induces same stress-responsive proteins. This general stress response enhances bacterial survival significantly. In Bacillus subtilis and closely related Gram-positive bacteria Listeria monocytogenes, the general stress response is controlled by the alternative transcription factor ${\sigma}^B$. The activity of ${\sigma}^B$ is regulated post-translationally by a signal transduction network that has been extensively studied in B. subtilis, and serve as a model for L. monocytogenes. The proposed model of L. monocytogenes signal transduction network is similar to that of B. subtilis, but the energy stress pathway is missing. More than 150 general stress proteins belong to ${\sigma}^B$ regulon of B. subtilis and L. monocytogenes. In both bacteria, ${\sigma}^B$ function is primarily important for resistance to diverse stresses. In addition, ${\sigma}^B$ function contributes to the control of important virulence genes in food-borne pathogen L. monocytogenes. Therefore, understanding of the general stress response is important not only for bacterial physiology, but also for pathogenicity.

Antibacterial Effects on Bacillus Stearothermophilus by Adding Natural Grapefruit Seed Extracts in Soymilk (두유에서 자몽씨 추출물의 Bacillus 균에 대한 항균효과)

  • Cho, Kyung Hwan;Park, Soo-Gil
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.139-143
    • /
    • 2005
  • We evaluated grapefruit seed extract for antibacterial activity at varying time intervals and concentration levels against heat tolerant and spore-forming Bacillus stearothermophilus, mesophilic Bacillus subtilis, and food poisoning Staphylococcus aureus. Grapefruit seed extract showed growth inhibitory activity against B. stearothemophilus and B. subtilis, and S. aureus at the level of 0.01 tp 0.03% in nutrient broth. However, when applied to soymilk in a market, grapefruit seed extract at the level above 0.2% effectively inhibited the growth of B. stearothermophilus, However, it failed to completely sterilize the test organisms. On the other hand, B. subtilis and S. aureus were completely sterilized at the level of 0.2% within 48 hrs and 72 h, respectively. The higher concentration of grapefruit seed extracts showed more effective antibacterial activities against the test organisms, but caused deteriorated organoleptic quality and emulsion stability. We could conclude, by applying grapefruit seed extract (0.015%) with thermal treatment (10 min at $121^{\circ}C$) that the microbial stability of commercial soymilk was enhanced greatly.

Control Effect of Bacillus subtilis B-4228 on Root Rot of Panax ginseng (Bacillus subtilis B-4228의 인삼 근부병 억제효과)

  • Lee, Byung-Dae;Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.28 no.1
    • /
    • pp.67-70
    • /
    • 2004
  • Bacillus subtilis B-4228 selected from ginseng field soil for prevention of rusty root was tested for the control of ginseng root rot. In petri-plate dual culture, mycelial growth of Cylindrocarpon destructans was inhibited by B-4228 and hyphal swelling of C. destructans was occurred. In pot experiment with C. destructans-contaminated soil B-4228 dipping of ginseng seedling showed significant preventive effect of root rot (p=0.01), percent healthy root 82% and 20% for treatment and control, root rot rate 6% and 50.4%, respectively.

Isolation and characterization of bacilysin against Ralstonia solanacearum from Bacillus subtilis JW-1 (Bacillus subtilis JW-1 균주가 생산하는 bacilysin의 풋마름병 억제 효과 및 특성)

  • Kim, Shin-Duk
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.136-139
    • /
    • 2018
  • The inhibitory compound (Compound S) against Ralstonia solanacearum and its conversion product (Compound S') were isolated from the culture filtrate of Bacillus subtilis JW-1 using a series of chromatography procedures. The structures were elucidated as alanyl-L-${\beta}$-(2,3-epoxycyclohexyl-4-one)alanine and alanyl-L-${\beta}$-(2,3-dihydroxycyclohexyl-4-one)alanine, respectively on the basis of nuclear magnetic resonance spectral data, including $^1H$, $^{13}C$, $^1H-^1H$ correlation spectroscopy and heteronuclear multiple bond correlation spectroscopy. The compound S exhibited a broad antimicrobial activity against $G^+$, $G^-$ bacteria, Saccharomyces cerevisiae and Candida albicans. The activity loss of the conversion product revealed that the epoxy function was essential for activity of Compound S.

Identification of the Predominant Species of Bacillus, Staphylococcus, and Lactic Acid Bacteria in Nuruk, a Korean Starter Culture (배양법을 이용한 누룩 발효 관련 Bacillus 속, Staphylococcus 속 세균 및 유산균의 우점종 확인)

  • Saeyoung Seo;Do-Won Jeong;Jong-Hoon Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.93-98
    • /
    • 2023
  • Nuruk is a starter culture of Korea manufactured by spontaneous fermentation of grains. We isolated bacteria of the genera Bacillus and Staphylococcus, and lactic acid bacteria (LAB) from eight commercial nuruk samples collected from four districts of Korea using selective agar media and identified them based current taxonomic standards. Bacillus was detected in all samples, but Staphylococcus or LAB were not detected in three samples. In seven samples, except one sample scored the highest cell number of LAB, Bacillus and Staphylococcus were counted as the highest and the lowest numbers, respectively. Six species of Bacillus were identified, and B. subtilis, B. velezensis, and B. licheniformis were predominant species. Nine species of coagulase-negative Staphylococcus were identified, and the predominance of S. pseudoxylosus and S. saprophyticus was confirmed. Ten species of LAB including Enterococcus, Lactobacillus and close relatives, Pediococcus, and Weissella were identified. P. pentosaceus was identified as the predominant species.

Solubility, Viscosity, Water Holding Capacity, and Oil Holding Capacity of Soybean Proteins by Bacillus subtilis and/or Lactobacillus bulgaricus (Bacillus subtilis와 Lactobacillus bulgaricus에 의한 청국장 단백질의 용해성, 점성, 보수성 및 보유성)

  • Lee, Jin-Woo
    • The Korean Journal of Community Living Science
    • /
    • v.18 no.3
    • /
    • pp.399-406
    • /
    • 2007
  • Soybean seeds were fermented by Bacillus subtilis and/or Lactobacillus bulgaricus to improve solubility, viscosity, water holding capacity and oil holding capacity of soybean proteins in Chongkukjang. The maximum colony forming unit and protease activity of B. subtilis or L bulgaricus were observed after 60 hours of fermentation, and those of the mixed fermentation by two microorganisms were steadily increased during the fermentation periods. Solubilities of soybean proteins by B. subtilis or L bulgaricus were steadily increased before the values were considerably increased to 60 hours of fermentation, whereas water holding capacities of the proteins were decreased by B. subtilis or L. bulgaricus and those of the mixed fermentation were decreased progressively. Viscosities of soybean proteins by B. subtilis and/or L. bulgaricus were decreased progressively during the fermentation. Viscosities of soybean proteins by B. subtilis and/or L. bulgaricus were decreased progressively during the fermentation. Oil holding capacities of soybeans by B. subtilis or L. bulgaricus were maximum at 20 or 80 hours of fermentation and those of the mixed fermentation were decreased after 10 hours of the fermentation.

  • PDF

Effect of the Mixed Culture of Bacillus subtilis and Lactobacillus plantarum on the Quality of Cheonggukjang (Bacillus subtilis와 Lactobacillus plantarum의 혼합배양이 청국장의 품질에 미치는 영향)

  • Ju, Kyung-Eun;Oh, Nam-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.399-404
    • /
    • 2009
  • The goal of this study was to improve the quality of cheonggukjang by the optimization of the inoculation methods of the Bacillus subtilis (B. subtilis) and Lactobacillus plantarum (L. plantarum) strains. In order to optimize the mixed cultivation of B. subtilis and L. plantarum, the B. subtilis strain was inoculated into steamed soybeans after cultivation of L. plantarum. Inoculation size of B. subtilis was changed to the simultaneous inoculation method in order to stimulate the growth of the L. plantarum in cheonggukjang. The viable cell count of L. plantarum increased from $2{\times}10^7$ CFU/g to $2-6{\times}10^8$ CFU/g and B. subtilis grew to $9{\times}10^8$ CFU/g. These results showed that 2 strains were successfully able to grow in the steamed soybean for good quality of cheonggukjang by optimization of the inoculation methods. The sensory evaluation indicated that a favorable aroma and overall acceptance of cheonggukjang by the optimized mixed cultivation of B. subtilis and L. plantarum, which was relatively higher than those of cheonggukjang by single strain inoculation of B. subtilis.

Biological Control of Lettuce Sclerotinia Rot by Bacillus subtilis GG95 (길항미생물 Bacillus subtilis GG95를 이용한 상추 균핵병의 생물학적 방제)

  • Lee, Hyun-Ju;Kim, Jin-Young;Lee, Jin-Gu;Hong, Soon-Sung
    • The Korean Journal of Mycology
    • /
    • v.42 no.3
    • /
    • pp.225-230
    • /
    • 2014
  • Sclerotinia sclerotiorum, a plant pathogenic fungus, can cause serious yield and quality losses in the winter lettuce field. For biological control of S. sclerotiorum, soil-born microorganisms that inhibit the mycelia growth of S. sclerotiorum and Fusarium oxysporum were isolated from diseased soil. Among the isolates, bacterial isolate, GG95, which was identified as Bacillus subtilis according to the morphological, physiological characteristics and by 16S rRNA similarity, showed the highest level of inhibitory activity. The growth conditions for B. subtilis GG95 were optimized in TSB media (pH 7) by culturing at $28^{\circ}C$ for 24 hrs. Maltose or fructose and peptone were selected as the best carbon and nitrogen sources, respectively. Greenhouse experiment was performed to test effectiveness of B. subtilis GG95 in the control sclerotinia rot. Drench application ($1{\times}10^8cfu/mL$, 3 times) of the bacterial culture broth to lettuce showed an effectiveness value of 88%, suggesting that B. subtilis GG95 would be a promising biocontrol agent for control of sclerotinia rot.

Effect of Culture Parameters on the Production of Growth Inhibitory Substance of Colletotrichum gloeosporioides from Bacillus subtilis (Bacillus subtilis에서 분비되는 Colletotrichum gloeosporioides 생장 저해물질 생산에 미치는 배양조건의 영향)

  • Cho, Soo-Jin;Cha, Byeong-Jin;Shin, Kwang-Soo
    • The Korean Journal of Mycology
    • /
    • v.32 no.2
    • /
    • pp.138-141
    • /
    • 2004
  • The effect of culture parameters on the production of Colletotrichum gloeosporioides growth inhibitory substance from Bacillus subtilis was investigated. The maximal growth inhibition zone was observed in the medium of pH 7.0. Among the tested carbon sources, glucose showed the largest growth inhibition zone above two fold than other carbon sources. Ammonium sulfate and organic nitrogen sources were effective on the production of growth inhibitory substance. Luria Bertani (LB) medium was the best on the production of antifungal substance from B. subtilis.