• Title/Summary/Keyword: Bacillus Bacillus licheniformis

Search Result 339, Processing Time 0.029 seconds

Complete genome sequence of Bacillus licheniformis 14ADL4 exhibiting resistance to clindamycin (Clindamycin 내성 Bacillus licheniformis 14ADL4의 유전체 염기서열)

  • Jeong, Do-Won;Lee, Byunghoon;Lee, Jong-Hoon
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.169-170
    • /
    • 2018
  • Clindamycin resistant Bacillus licheniformis 14ADL4 was isolated from doenjang, a Korean high-salt-fermented soybean food. Strain 14ADL4 contains a single circular 4,332,232 bp chromosome with a G + C content of 45.86%. The complete genome of strain 14ADL4 includes lmrA and lmrB homologs may confer resistance to clindamycin.

Fermentation Patterns of Chungkookjang and Kanjang by Bacillus licheniformis B1 (Bacillus licheniformis B1에 의한 청국장 및 간장 발효)

  • Lee, Jae-Jung;Lee, Dong-Seok;Kim, Han-Bok
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.296-301
    • /
    • 1999
  • A Bacillus strain from Korean soil was isolated and identified to be Bacillus licheniformis B1 through various biochemical tests, VITEK, and MIDI system analysis. The strain produced extracellular amylase and protease. Whether or not the strain can perform Chungkookjang fermentation with autoclaved soybean and Kanjang fermentation was determined in this study. In Chungkookjang fermentation, browining materials of strong anti-oxidant increased 8-fold, and 2-fold in Kanjang, compared with initiation material for fermentation. Maximal protease activity in Chungkookjang was observed one day after inoculation. Protease activities in Kanjang decreased to the half, and then maintained constant values during fermentation, probably due to the inhibitory effect of salt on protease activities. High molecular mass of nucleic acids was identified in Chungkookjang and Kanjang. Since the nucleic acids were not observed in autoclaved soybean, they seem to be originated from B. licheniformis B1. This study demonstrated successive fermentation of Chungkookjang and Kanjang by B. licheniformis B1 isolated from nature, and suggested possible development of food rich in browing and nucleic acids.

  • PDF

Complete genome sequence of Bacillus licheniformis strain 0DA23-1, a potential starter culture candidate for soybean fermentation (콩발효 종균후보 Bacillus licheniformis 0DA23-1의 유전체 염기서열)

  • Jeong, Do-Won;Lee, Byunghoon;Heo, Sojeong;Jang, Mihyun;Lee, Jong-Hoon
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.453-455
    • /
    • 2018
  • Bacillus licheniformis strain 0DA23-1, a potential fermentation starter candidate, was isolated from doenjang, a Korean high-salt-fermented soybean food. Strain 0DA23-1 contains a single circular 4,405,373-bp chromosome with a G + C content of 45.96%. The complete genome of strain 0DA23-1 does not include any of the virulence factors found in the well-known pathogens Bacillus cereus and Staphylococcus aureus. Additionally, no genes associated with resistance to eight antibiotics (chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, tetracycline, and vancomycin), hemolysis, or biofilm formation were identified.

Optimal conditions for pigmentation in Bacillus licheniformis SSA3 and cloning of a DNA fragment involved in pigment production

  • Kim, Jong-Kyu;Shin, Ok-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.22-25
    • /
    • 1995
  • Bacillus licheniformis SSA3 can produce a dark-brown antimutagenic pigment. The optimal conditions for production of this pigment are reached at 0.1% tyrosine, in pH 6-8, within 7-9 days, at $30^{\circ}C$, and in aerobic condition. We cloned a DNA fragment involved in pigment synthesis from Bacillus licheniformis SSA3 using a mutant strain. The cloned DNA was 7kb in size, which can produce the same pigment even in E. coli.

  • PDF

Transformation and Mutation of Bacillus licheniformis 9945a Producing ${\gamma}-Poly(glutamic\;acid)$ (${\gamma}-Poly(glutamic\;acid)$ 생산성 균주 Bacillus licheniformis 9945a의 형질전환 미 돌연변이 유도)

  • Chung, Wan-Seok;Ko, Young-Hwan
    • Applied Biological Chemistry
    • /
    • v.40 no.3
    • /
    • pp.173-177
    • /
    • 1997
  • Bacillus licheniformis 9945a releases a natural ${\gamma}-poly(glutamic\;acid)({\gamma}-PGA)$ into fermentation broth and shows a mucoid phenotype on the solid agar medium. Transformation of mucoid cells of Bacillus species has not been simple and straightforward. The transpositional activity of Tn10 in B. licheniformis also has not been own either. Thus, a spontaneous non-mucoid derivative of the B. licheniformis was obtained first. Shuttle vector pHV1248 containing mini-Tn10 was introduced into the non-mucoid derivative by the method of protoplast transformation. The resulting transformant was reverted to the wild mucoid phenotype, and then mutated randomly with the mini-transposon by heat induction. Auxotrophs requiring arginine, lysine, or tryptophan were isolated by replica plating method. Southern blotting and DNA-DNA hybridzation analysis showed that these auxotrophs were generated by mini-Tn10 insertion into the chromosomal DNA. This method of transformation and mutation using pHV1248 would be useful for the generation of diverse mutants of B. licheniformis 9945a.(Received January 24,1997; accepted March 10, 1997)

  • PDF

Characterization of Bacillus licheniformis as a Probiotic (Bacillus licheniformis의 생균제로서의 특성)

  • Kim Jin-Wook;Jun Kyoung-Dong;Kang Jae-Seon;Jang Jung-Su;Ha Bae-Jin;Lee Jae-Hwa
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.359-362
    • /
    • 2005
  • Bacillus licheniformis was an useful material for improvement of fecal microflora. The stability of Bacillus licheniformis in low pH (pH 2, 3, 4, 6, 7), artificial bile acid, high concentration of salt (0, 5, 10, 20, $30\%$), and ethanol (0, 4, 8, 16, $32\%$) was investigated in this study. The viability of Bacillus licheniformis was stable for pH 3, 4, 6, 7 Final viability of Bacillus licheniformis was confirmed below $25\%$, in the bile acid. In high concentration of salt, Bacillus licheniformis showed optimal viability in $10\%$ of salt. The viability of Bacillus licheniformis was over $95\%$ in condition of ethanol concentration $4\%,\;8\%,16\%,\;32\%$ contrast with uncontained ethanol at $37^{\circ}C$ for 4h. It was verified that Bacillus licheniformis was stable for pH 4, 6, 7, high concentration of salt and ethanol but was unstable in pH 2 and bile acid.

Inhibitory Activity of Bacillus licheniformis AJ on the Growth of Diarrheal Pathogens (Bacillus licheniformis AJ 균주제제의 설사원인 미생물의 성장 억제효과)

  • 김지영;배은아;한명주;김동현
    • Biomolecules & Therapeutics
    • /
    • v.7 no.4
    • /
    • pp.385-389
    • /
    • 1999
  • The injibitory effect of Bacillus licheniformis AJ isolated from genitourinary normal flora as a new probiotics on the growth of diarrheal pathogens was studied. This B. licheniformis AJ inhibited the growth of E.coli O-157. Salmonella typhi and Shigella sonnei as well as the infectivity of rotavirus. However, it did not inhibit the growth of Helicobacter pyloriand human intestinal bacteria although it inhibited the harmful enzyme activity of human intestinal bacteria. B. licheniformis AJ seems to excret heat-lable growth-inhibitory protein, bacteriocin, into the media. These results suggest that B. lichenoformis AJ could be used as a new type of probiotics.

  • PDF

Urease Characteristics and Phylogenetic Status of Bacillus paralicheniformis

  • Jeong, Do-Won;Lee, Byunghoon;Lee, Hyundong;Jeong, Keuncheol;Jang, Mihyun;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.1992-1998
    • /
    • 2018
  • In 2015, Bacillus paralicheniformis was separated from B. licheniformis on the basis of phylogenomic and phylogenetic studies, and urease activity was reported as a phenotypic property that differentiates between the two species. Subsequently, we have found that the urease activity of B. paralicheniformis is strain-specific, and does not reliably discriminate between species, as strains having the same urease gene cluster were identified in B. licheniformis and B. sonorensis, the closest relatives of B. paralicheniformis. We developed a multilocus sequence typing scheme using eight housekeeping genes, adk, ccpA, glpF, gmk, ilvD, pur, spo0A, and tpi to clearly identify B. paralicheniformis from closely related Bacillus species and to find a molecular marker for the rapid identification of B. paralicheniformis. The scheme differentiated 33 B. paralicheniformis strains from 90 strains formerly identified as B. licheniformis. Among the eight housekeeping genes, spo0A possesses appropriate polymorphic sites for the design of a B. paralichenofomis-specific PCR primer set. The primer set designed in this study perfectly separated B. paralicheniformis from B. licheniformis and B. sonorensis.

A Case of Bacillus licheniformis Bacteremia Associated with Bronchoscopy (기관지 내시경 후에 발생한 Bacillus Licheniformis 균혈증)

  • Hong, Tae Won;Kim, Hyo Youl;Jee, Myeong Gwan;Choi, Joung Wook;Youg, Suk Joong;Shin, Kye Chul;Lee, Won Yeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.6
    • /
    • pp.553-556
    • /
    • 2004
  • Bacillus species are aerobic, gram-positive, spore forming rods, and they are usually found in the surrounding environment. If they are isolated in the clinical specimen, they are generally considered as contaminants rather than a true pathogen. Infection with Bacillus licheniformis is usually associated with the immunocompromised state, trauma, an indwelling intravenous catheter or an intravenous drug abuser. This infection is easily controlled by removal of the catheter and surgical debridement of the local infected tissue as well as an appropriate antimicrobial therapy. We reported here on a case of Bacillus licheniformis bacteremia associated with a bronchoscopic procedure in an immune competent patient.

Monitoring the Ecology of Bacillus During Daqu Incubation, a Fermentation Starter, Using Culture-Dependent and Culture-Independent Methods

  • Yan, Zheng;Zheng, Xiao-Wei;Han, Bei-Zhong;Han, Jian-Shu;Nout, M.J. Robert;Chen, Jing-Yu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.614-622
    • /
    • 2013
  • Daqu, a traditional fermentation starter, has been used to produce attractively flavored foods such as vinegar and Chinese liquor for thousands of years. Although Bacillus spp. are one of the dominant microorganisms in Daqu, more precise information is needed to reveal why and how Bacillus became dominant in Daqu, and next, to assess the impact of Bacillus sp. on Daqu and its derived products. We combined culture-dependent and culture-independent methods to study the ecology of Bacillus during Daqu incubation. Throughout the incubation, 67 presumptive Bacillus spp. isolates were obtained, 52 of which were confirmed by 16S rDNA sequencing. The identified organisms belonged to 8 Bacillus species: B. licheniformis, B. subtilis, B. amyloliquefaciens, B. cereus, B. circulans, B. megaterium, B. pumilus, and B. anthracis. A primer set specific for Bacillus and related genera was used in a selective PCR study, followed by a nested DGGE PCR targeting the V9 region of the 16S rDNA. Species identified from the PCR-DGGE fingerprints were related to B. licheniformis, B. subtilis, B. amyloliquefaciens, B. pumilus, B. benzoevorans, and B. foraminis. The predominant species was found to be B. licheniformis. Certain B. licheniformis strains exhibited potent antimicrobial activities. The greatest species diversity occurred at the Liangmei stage of Daqu incubation. To date, we lack sufficient knowledge of Bacillus distribution in Daqu. Elucidating the ecology of Bacillus during Daqu incubation would enable the impact of Bacillus on Daqu to be accessed, and the quality and stabilization of Daqu-derived products to be optimized.