• Title/Summary/Keyword: BOOTSTRAP

Search Result 686, Processing Time 0.022 seconds

Bootstrap Confidence Intervals of the Process Capability Index Based on the EDF Expected Loss (EDF 기대손실에 기초한 공정능력지수의 붓스트랩 신뢰구간)

  • 임태진;송현석
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.4
    • /
    • pp.164-175
    • /
    • 2003
  • This paper investigates bootstrap confidence intervals of the process capability index(PCI) based on the expected loss derived from the empirical distribution function(EDF). The PCI based on the expected loss is too complex to derive its confidence interval analytically, so the bootstrap method is a good alternative. We propose three types of the bootstrap confidence interval; the standard bootstrap(SB), the percentile bootstrap(PB), and the acceleration biased­corrected percentile bootstrap(ABC). We also perform a comprehensive simulation study under various process distributions, in order to compare the accuracy of the coverage probability of the bootstrap confidence intervals. In most cases, the coverage probabilities of the bootstrap confidence intervals from the EDF PCI turned out to be more accurate than those from the PCI based on the normal distribution. It is expected that the bootstrap confidence intervals from the EDF PCI can be utilized in real processes where the true distribution family may not be known.

Bootstrap methods for long-memory processes: a review

  • Kim, Young Min;Kim, Yongku
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • This manuscript summarized advances in bootstrap methods for long-range dependent time series data. The stationary linear long-memory process is briefly described, which is a target process for bootstrap methodologies on time-domain and frequency-domain in this review. We illustrate time-domain bootstrap under long-range dependence, moving or non-overlapping block bootstraps, and the autoregressive-sieve bootstrap. In particular, block bootstrap methodologies need an adjustment factor for the distribution estimation of the sample mean in contrast to applications to weak dependent time processes. However, the autoregressive-sieve bootstrap does not need any other modification for application to long-memory. The frequency domain bootstrap for Whittle estimation is provided using parametric spectral density estimates because there is no current nonparametric spectral density estimation method using a kernel function for the linear long-range dependent time process.

Comparison of Bootstrap Methods for LAD Estimator in AR(1) Model

  • Kang, Kee-Hoon;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.745-754
    • /
    • 2006
  • It has been shown that LAD estimates are more efficient than LS estimates when the error distribution is double exponential in AR(1) model. In order to explore the performance of LAD estimates one can use bootstrap approaches. In this paper we consider the efficiencies of bootstrap methods when we apply LAD estimates with highly variable data. Monte Carlo simulation results are given for comparing generalized bootstrap, stationary bootstrap and threshold bootstrap methods.

Bootstrap Confidence Intervals of Precision-to-Tolerance Ratio (PTR의 붓스트랩 신뢰구간)

  • Chang, Mu-Seong;Kim, Sang-Boo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.2
    • /
    • pp.37-43
    • /
    • 2007
  • ANOVA is widely used for measurement system analysis. It assumes that the measurement error is normally distributed, which may not be seen in certain industrial cases. In this study, the exact and bootstrap confidence intervals for precision-to-tolerance ratio (PTR) are obtained for the cases where the measurement errors are normally and non-normally distributed and the reproducibility variation can be ignored. Lognormal and gamma distributions are considered for non-normal measurement errors. It is assumed that the quality characteristics have the same distributions of the measurement errors. Three different bootstrap methods of SB (Standard Bootstrap), PB (Percentile Bootstrap), and BCPB (Biased-Corrected Percentile Bootstrap) are used to obtain bootstrap confidence intervals for PTR. Based on a coverage proportion of PTR, a comparative study of exact and bootstrap methods is performed. Simulation results show that, for non-normal measurement error cases, the bootstrap methods of SB and BCPB are superior to the exact one.

On the Performance of Iterated Wild Bootstrap Interval Estimation of the Mean Response

  • Kim, Woo-Chul;Ko, Duk-Hyun
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.551-562
    • /
    • 1995
  • We consider the iterated bootstrap method in regression model with heterogeneous error variances. The iterated wild bootstrap confidence intervla of the mean response is considered. It is shown that the iterated wild bootstrap confidence interval has coverage error of order $n^{-1}$ wheresa percentile method interval has an error of order $n^{-1/2}$. The simulation results reveal that the iterated bootstrap method calibrates the coverage error of percentile method interval successfully even for the small sample size.

  • PDF

REGENERATIVE BOOTSTRAP FOR SIMULATION OUTPUT ANALYSIS

  • Kim, Yun-Bae
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.05a
    • /
    • pp.169-169
    • /
    • 2001
  • With the aid of fast computing power, resampling techniques are being introduced for simulation output analysis (SOA). Autocorrelation among the output from discrete-event simulation prohibit the direct application of resampling schemes (Threshold bootstrap, Binary bootstrap, Stationary bootstrap, etc) extend its usage to time-series data such as simulation output. We present a new method for inference from a regenerative process, regenerative bootstrap, that equals or exceeds the performance of classical regenerative method and approximation regeneration techniques. Regenerative bootstrap saves computation time and overcomes the problem of scarce regeneration cycles. Computational results are provided using M/M/1 model.

  • PDF

New Bootstrap Method for Autoregressive Models

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.1
    • /
    • pp.85-96
    • /
    • 2013
  • A new bootstrap method combined with the stationary bootstrap of Politis and Romano (1994) and the classical residual-based bootstrap is applied to stationary autoregressive (AR) time series models. A stationary bootstrap procedure is implemented for the ordinary least squares estimator (OLSE), along with classical bootstrap residuals for estimated errors, and its large sample validity is proved. A finite sample study numerically compares the proposed bootstrap estimator with the estimator based on the classical residual-based bootstrapping. The study shows that the proposed bootstrapping is more effective in estimating the AR coefficients than the residual-based bootstrapping.

Stationary Bootstrap Prediction Intervals for GARCH(p,q)

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2013
  • The stationary bootstrap of Politis and Romano (1994) is adopted to develop prediction intervals of returns and volatilities in a generalized autoregressive heteroskedastic (GARCH)(p, q) model. The stationary bootstrap method is applied to generate bootstrap observations of squared returns and residuals, through an ARMA representation of the GARCH model. The stationary bootstrap estimators of unknown parameters are defined and used to calculate the stationary bootstrap samples of volatilities. Estimates of future values of returns and volatilities in the GARCH process and the bootstrap prediction intervals are constructed based on the stationary bootstrap; in addition, asymptotic validities are also shown.

A Study of Applying Bootstrap Method to Seasonal Data (계절성 데이터의 부트스트랩 적용에 관한 연구)

  • Park, Jin-Soo;Kim, Yun-Bae
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.119-125
    • /
    • 2010
  • The moving block bootstrap, the stationary bootstrap, and the threshold bootstrap are methods of simulation output analysis, which are applicable to autocorrelated data. These bootstrap methods assume the stationarity of data. However, bootstrap methods cannot work if the stationary assumption is not guaranteed because of seasonality or trends in data. In the simulation output analysis, threshold bootstrap method is the best in describing the autocorrelation structure of original data set. The threshold bootstrap makes the cycle based on threshold value. If we apply the bootstrap to seasonality data, we can get similar accuracy of the results. In this paper, we verify the possibility of applying the bootstrap to seasonal data.

Streamflow Generation by Boostrap Method and Skewness (Bootstrap 방법에 의한 하천유출량 모의와 왜곡도)

  • Kim, Byung-Sik;Kim, Hung-Soo;Seoh, Byung-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.3
    • /
    • pp.275-284
    • /
    • 2002
  • In this study, a method of random resampling of residuals from stochastic models such as the Monte-Carlo model, the lag-one autoregressive model(AR(1)) and the periodic lag-one autoregressive model(PAR(1)), has been adopted to generate a large number of long traces of annual and monthly steamflows. Main advantage of this resampling scheme called the Bootstrap method is that it does not rely on the assumption of population distribution. The Bootstrap is a method for estimating the statistical distribution by resampling the data. When the data are a random sample from a distribution, the Bootstrap method can be implemented (among other ways) by sampling the data randomly with replacement. This procedure has been applied to the Yongdam site to check the performance of Bootstrap method for the streamflow generation. and then the statistics between the historical and generated streamflows have been computed and compared. It has been shown that both the conventional and Bootstrap methods for the generation reproduce fairly well the mean, standard deviation, and serial correlation, but the Bootstrap technique reproduces the skewness better than the conventional ones. Thus, it has been noted that the Bootstrap method might be more appropriate for the preservation of skewness.