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Abstract
A new bootstrap method combined with the stationary bootstrap of Politis and Romano (1994) and the

classical residual-based bootstrap is applied to stationary autoregressive (AR) time series models. A stationary
bootstrap procedure is implemented for the ordinary least squares estimator (OLSE), along with classical boot-
strap residuals for estimated errors, and its large sample validity is proved. A finite sample study numerically
compares the proposed bootstrap estimator with the estimator based on the classical residual-based bootstrap-
ping. The study shows that the proposed bootstrapping is more effective in estimating the AR coefficients than
the residual-based bootstrapping.

Keywords: Autoregressive model, stationary bootstrap, residual-based bootstrap, asymptotic
property.

1. Introduction

There have been lasting interests in bootstrapping methods for ARMA models. A residual-based
bootstrap for AR processes was proposed by Freedman (1981, 1984) and its higher-order property
was investigated by Bose (1988). Bootstrap prediction intervals for AR models were developed by
Thombs and Schucany (1990), Kabaila (1993), Grigoletto (1998) and Clements and Kim (2007) while
a bootstrap prediction interval for vector autoregression was constructed by Kim (2004). Politis (2003)
reviewed various bootstrap methods for AR models. Pascual et al. (2004) proposed a flexible and sim-
ple bootstrap procedure for the prediction of ARIMA processes. Goncalves and Kilian (2004, 2007)
established asymptotic validity of fixed-design wild bootstrap and pairwise bootstrap for AR processes
with conditional heteroskedasticity. Hwang and Shin (2011) applied the stationary bootstrapping for
nonparametric estimators of nonlinear AR models.

In this paper, a new bootstrap method combined with the stationary bootstrap of Politis and Ro-
mano (1994) and the classical residual-based bootstrap is applied to linear AR models. The stationary
bootstrap method generates stationary bootstrapped data, and these data are used to develop the sta-
tionary bootstrap version of the least square estimators, where classical bootstrap residuals are used for
estimated errors. We show that, for bootstrap estimation of AR models, our proposed bootstrapping
is superior to residual-based bootstrapping. The stationary bootstrap is a powerful resampling method
for stationary time series processes. It is a block-resampling technique characterized by geometrically
distributed random block length, and is very useful because the bootstrapped process is conditionally
stationary and preserves the weak dependence structure of the original process. Recent applications
of the stationary bootstrap were made by Swensen (2003), Paparoditis and Politis (2005) and Parker et
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al. (2006) for unit root tests and by Hwang and Shin (2011, 2012a, 2012b) for nonparametric analysis.
Lahiri (1999) and Nordman (2009) analyzed new properties of the stationary bootstrap.

As a theoretical result, the first-order asymptotic validity of our proposed bootstrap for AR pro-
cesses is established by showing that the bootstrap OLSE has the same limiting distribution as the
OLSE. A finite sample simulation experiment compares the proposed bootstrapping with the usual
residual-based bootstrapping for AR(1) model. The experiment reveals that the proposed bootstrap-
ping is better than the residual-based bootstrapping for parameter estimation and for confidence inter-
val estimation.

The remaining of the paper is organized as follows. In Section 2, the stationary bootstrap proce-
dure is described for the OLSE of AR models and a large sample asymptotic result is established. In
Section 3, a Monte Carlo study is provided. In Section 4, concluding remarks are given.

2. The Stationary Bootstrap and Large Sample Asymptotics

We consider a stationary AR(p) process of known order p, defined by

Yt = ϕ0 + ϕ1Yt−1 + · · · + ϕpYt−p + at, t = . . . ,−2,−1, 0, 1, 2, . . . (2.1)

with the following assumption:

(C1) {at} is a sequence of zero-mean, independent random variable with common distribution Fa such
that E[a2

t ] = σ2
a < ∞; ϕ = (ϕ0, ϕ1, . . . , ϕp)′ is a vector of unknown parameters such that all the roots

of 1 − ϕ1B − · · · − ϕpBp = 0 lie outside the unit circle.

We construct the stationary bootstrap estimator of the unknown parameters, for which the station-
ary bootstrap procedure is reviewed in Section 2.1. In Section 2.2, an algorithm is developed for the
OLSE and its large sample validity is established.

2.1. The stationary bootstrap procedure

Suppose that {Yt} is a stationary weakly dependent time series taking values in Rk for some k ≥ 1. Let
Y1, . . . ,Yn be observed. First we define a new time series {Yni : i ≥ 1} by a periodic extension of the
observed data set as follows. For each i ≥ 1, define Yni := Y j where j is such that i = qn + j for some
integer q ≥ 0. The sequence {Yni : i ≥ 1} is obtained by wrapping the data Y1, . . . ,Yn around a circle,
and relabelling them as Yn1,Yn2, . . . . Next, for a positive integer l, define the blocks B(i, l), i ≥ 1
as B(i, l) = {Yni, . . . ,Yn(i+l−1)} consisting of l observations starting from Yni. Bootstrap observations
under the stationary bootstrap method are obtained by selecting a random number of blocks from
collection {B(i, l) : i = 1, . . . , n, l ≥ 1}. To do this, we generate random variables I1, . . . , In and
L1, . . . , Ln such that conditional on the observations Y1, . . . ,Yn,

(i) I1, . . . , In are i.i.d. discrete uniform on {1, . . . , n}: P∗(I1 = i) = 1/n, for i = 1, . . . , n,

(ii) L1, . . . , Ln are i.i.d. random variables having the geometric distribution with a parameter ρ ∈
(0, 1): P∗(L1 = l) = ρ(1 − ρ)l−1, for l = 1, 2, . . . , where ρ = ρ(n) depends on the sample size n,

(iii) the collections {I1, . . . , In} and {L1, . . . , Ln} are independent.

Here and in the following, P∗ and E∗ denote, respectively, the conditional probability and the
conditional expectation, given Y1, . . . ,Yn. For notational simplicity, we suppress dependence of the
variables I1, . . . , In, L1, . . . , Ln and of the parameter ρ on n. We assume that ρ goes to 0 as n → ∞.
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Under the stationary bootstrap the block length variables L1, . . . , Ln are random and the expected block
length E∗L1 is ρ−1, which tends to∞ as n→ ∞. Now, a pseudo-time series Y∗1, . . . ,Y

∗
n is generated in

the following way. Let τ = inf{k ≥ 1 : L1+· · ·+Lk ≥ n} and select the τ blocks B(I1, L1), . . . , B(Iτ, Lτ).
Note that there are L1 + · · · + Lτ elements in the resampled blocks B(I1, L1), . . . , B(Iτ, Lτ). Arranging
these elements in a series and deleting the last L1 + · · · + Lτ − n elements, we get the bootstrap
observations Y∗1, . . . ,Y

∗
n. Conditionally on {Y1, . . . ,Yn}, {Y∗t } is stationary.

2.2. Bootstrap estimator and large sample validity

We develop a bootstrap for the OLSE of ϕ. Let {y1−p, . . . , y0, y1, . . . , yn} be a realization of the AR(p)
process. Let Yt = (1, yt−1, . . . , yt−p) for t = 1, 2, . . . , n. For a matrix A, A′ denotes the transpose of A.
Let y = (y1, y2, . . . , yn)′, a = (a1, a2, . . . , an)′ and

X =


1 y0 y−1 · · · y1−p
1 y1 y0 · · · y2−p
...

...
...

. . .
...

1 yn−1 yn−2 · · · yn−p

 ≡

Y1
Y2
...

Yn

 .
Then we have y = Xϕ + a and the OLSE of ϕ̂ is

ϕ̂ =
(
X′X

)−1 X′y. (2.2)

Our bootstrap estimator is of the form ϕ̂∗ = (X∗′X∗)−1X∗′ỹ∗ where X∗ is constructed from X by the
stationary bootstrapping and ỹ∗ = X∗ϕ̂ + ã∗ with ã∗ = (â∗1, â

∗
2, . . . , â

∗
n)′ and {â∗t : t = 1, 2, . . . , n} being

a random draw from the OLS residuals. More details are described in the following algorithm.

Algorithm 1.

Step 1. Estimate ϕ by the OLSE in (2.2).

Step 2. Compute the OLS-residuals ât:

ât = yt − ϕ̂0 − ϕ̂1yt−1 − · · · − ϕ̂pyt−p, t = p + 1, . . . , n

and ât = 0 for t = 1, . . . , p. Let F̂a be the empirical distribution function of the residuals, i.e.,
F̂a(x) = 1/n

∑n
i=1 1(−∞,âi](x).

Step 3. Apply the stationary bootstrap method to {Y1, . . . ,Yn}, and obtain stationary bootstrap obser-
vations {Y∗1, . . . ,Y∗n} with Y∗t = (1, y∗t−1, . . . , y

∗
t−p).

Step 4. Calculate ϕ̂∗ = (ϕ̂∗0, ϕ̂
∗
1, . . . , ϕ̂

∗
p)′, the stationary bootstrap estimator of ϕ with the stationary

bootstrap observations in Step 3 as follows:

ϕ̂∗ =
(
X∗′X∗

)−1 X∗′ỹ∗,

where X∗ = (Y∗1
′,Y∗2

′, . . . ,Y∗n
′)′ is the n × (p + 1) matrix with the stationary bootstrap obser-

vations, and ỹ∗ = X∗ϕ̂+ ã∗ with ã∗ = (â∗1, â
∗
2, . . . , â

∗
n)′ where {â∗t : t = 1, 2, . . . , n} is a sequence

of i.i.d. random draw from F̂a.
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In the following theorem, we present our main theoretical result whose proof is given in Appendix.

In the sequel, we write Xn
p
−→ X if Xn converges in probability to X; Xn

p∗
−→ X if Xn converges to X in

conditional probability given the observations {y1−p, . . . , yn}; Xn
d−→ X if Xn converges in distribution

to X; and Xn
d∗−→ X if Xn converges in distribution to X in conditional probability given observations

{y1−p, . . . , yn}.

Theorem 1. Consider (2.1) with assumption (C1). If ρ → 0 and nρ → ∞ as n → ∞, then we have,
as n→ ∞,

sup
x

∣∣∣∣P∗ (√n
[
ϕ̂∗ − ϕ̂

]
≤ x

)
− P

(√
n
[
ϕ̂ − ϕ

]
≤ x

)∣∣∣∣ p
−→ 0.

3. Monte Carlo Study

Our proposed bootstrapping combined with the stationary bootstrap (SB, hereafter) is compared with
classical residual-based bootstrapping (RB) for inference on an AR(1) model given by

yt = ϕ0 + ϕ1yt−1 + at, t = 1, . . . , n. (3.1)

Parameters are set to: ϕ0 = 0; ϕ1 = 0.95, 0.7,−0.7; n = 25, 50, 100, 200. Data {yt, t = 1, . . . , n} are
simulated with pseudo i.i.d. N(0, 1) errors a1, . . . , an generated by RNNOA, an IMSL FORTRAN
subroutine. The initial value y0 is set to 0. For ϕ1, bootstrap estimators and 90% bootstrap confidence
intervals are constructed using RB and SB. We briefly outline RB.

RB. Step 1 : Fit (3.1) by OLS obtaining the OLSE ϕ̄ = (ϕ̄0, ϕ̄1)′ and the OLS residuals āt, t = 2, . . . , n
with ā1 = 0. Step 2 : Compute y∗t = ϕ̄0 + ϕ̄1y∗t−1 + a∗t , t = 2, . . . , n with y∗1 = y1 where {a∗1, . . . , a∗n}
is a set of random draw from {āt, t = 1, . . . , n}. Step 3 : Compute bootstrap OLSE ϕ̄∗ = (ϕ̄∗0, ϕ̄

∗
1)′ by

OLS-fitting of (3.1) with the bootstrap data {y∗1, . . . , y∗n}.

An RB OLSE of ϕ1 for a given sample {y1, . . . , yn} is the average of B, say, bootstrap OLSE
ϕ̄∗(b), b = 1, . . . , B obtained by repeating Step 2–Step 3 of RB B times. A 90% RB confidence interval
of ϕ1 is [L∗B,U

∗
B], where L∗B and U∗B are 5% and 95% empirical percentiles of ϕ̄∗(b), b = 1, . . . , B,

respectively.
An SB OLSE and confidence interval of ϕ1 are constructed by the procedure described in Section

2.2. In order to implement SB, we use the block length parameter ρ = 0.05iρ(n/100)−1/3, iρ = 1, 2, 3.
The order n−1/3 is chosen because Politis and White (2004) and Patton et al. (2009) reported that
optimal order of ρ for estimating simple mean is n−1/3. Even though we are estimating the AR(1)
coefficient rather than the simple mean, the order n−1/3 would be a reasonable one.

Table 1 reports means and variances of the bootstrap estimates as well as coverage probabilities
and average lengths of 90% bootstrap confidence intervals. The table is constructed by 10,000 in-
dependent replications of the bootstrap estimating procedures with B = 1, 000. In the table, “Eff.”
denotes the relative efficiency MSERB/MSES B of the SB estimator relative to RB estimator, where
MSE = (Mean − ϕ1)2 + Variance is the mean square error of a corresponding estimator of ϕ1.

Table 1 reveals many interesting results. The most conspicuous feature is that values of Eff. are
generally greater than 1, implying that SB produces better estimator than RB. Especially for ϕ1 = 0.95,
the efficiency is greater than 1.9 for all n = 25, 50, 100, 200 considered here. For ϕ1 = 0.7, SB retains
efficiency advantage over RB having Eff value ≥ 1.2. On the other hand, for ϕ = −0.7, SB loses the
efficiency advantage but is still almost as efficient as RB with Eff values around 1.
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Table 1: Bootstrap parameter estimates and confidence intervals for AR(1) model.
Parameter estimation, ϕ1 90% Confidence Interval, ϕ1

ϕ1 n ρ Mean Variance Eff. Cov. Prob. Avg. Len.
RB SB RB SB RB SB RB SB

.95 25 .08 .63 .74 .020 .022 1.91 15. 61. .52 .40

.95 25 .16 .63 .74 .019 .022 1.91 14. 62. .52 .41

.95 25 .24 .63 .74 .020 .022 1.91 15. 62. .52 .41

.95 50 .06 .78 .85 .007 .008 2.04 24. 73. .31 .24

.95 50 .13 .78 .85 .007 .007 2.05 24. 74. .31 .24

.95 50 .19 .78 .85 .007 .008 2.04 25. 74. .31 .24

.95 100 .05 .86 .90 .002 .003 2.07 44. 82. .18 .14

.95 100 .10 .86 .90 .002 .003 2.05 42. 81. .18 .14

.95 100 .15 .86 .90 .002 .003 2.07 43. 81. .18 .14

.95 200 .04 .91 .93 .001 .001 1.90 60. 86. .10 .09

.95 200 .08 .91 .93 .001 .001 1.92 61. 86. .10 .09

.95 200 .12 .91 .93 .001 .001 1.91 60. 85. .10 .09

.70 25 .08 .45 .56 .024 .031 1.69 62. 83. .59 .55

.70 25 .16 .46 .57 .023 .031 1.70 63. 85. .59 .56

.70 25 .24 .45 .56 .024 .032 1.68 62. 84. .59 .56

.70 50 .06 .57 .63 .011 .013 1.55 73. 87. .39 .37

.70 50 .13 .58 .64 .012 .013 1.54 73. 88. .39 .37

.70 50 .19 .57 .63 .011 .013 1.56 73. 88. .39 .38

.70 100 .05 .64 .67 .006 .006 1.35 82. 89. .26 .25

.70 100 .10 .64 .67 .006 .006 1.36 81. 88. .26 .25

.70 100 .15 .64 .67 .006 .006 1.36 81. 88. .26 .25

.70 200 .04 .67 .69 .003 .003 1.20 86. 89. .17 .17

.70 200 .08 .67 .69 .003 .003 1.19 85. 89. .17 .17

.70 200 .12 .67 .69 .003 .003 1.20 86. 90. .17 .17
−.70 25 .08 −.63 −.66 .019 .023 .97 91. 90. .50 .48
−.70 25 .16 −.63 −.66 .020 .023 .97 90. 90. .50 .48
−.70 25 .24 −.63 −.66 .019 .023 .97 90. 90. .50 .48
−.70 50 .06 −.66 −.68 .010 .011 .99 91. 91. .35 .34
−.70 50 .13 −.66 −.68 .010 .011 .99 90. 91. .35 .35
−.70 50 .19 −.66 −.68 .010 .011 1.00 90. 90. .35 .35
−.70 100 .05 −.68 −.69 .005 .005 1.00 90. 90. .24 .24
−.70 100 .10 −.68 −.69 .005 .005 .99 91. 90. .24 .24
−.70 100 .15 −.68 −.69 .005 .005 .99 91. 90. .24 .24
−.70 200 .04 −.69 −.69 .003 .003 1.00 90. 90. .17 .17
−.70 200 .08 −.69 −.69 .003 .003 1.00 90. 91. .17 .17
−.70 200 .12 −.69 −.70 .003 .003 1.00 90. 90. .17 .17

Note: Number of replications = 10,000, number of bootstrap repetitions = 1,000.

Investigating Table 1, we see that the efficiency advantage of SB originates from less-biased esti-
mation. Mean of SB estimator is closer to ϕ1 than that of RB especially for ϕ1 = 0.95. On the other
hand, variance of SB estimator is slightly greater than that of RB. We see that SB is also more effective
for the confidence interval than RB: compared with the RB confidence interval, the SB confidence in-
terval has a better coverage probability that is closer to the nominal value 90% and has shorter average
length especially for ϕ1 = 0.95 and (ϕ1 = 0.7; n = 25, 50). Performance of SB seems to be insensitive
to ρ: results for iρ = 1, 2, 3 are similar. In this Monte Carlo experiment, we may conclude that SB is
better than RB for small n and large ϕ1 and SB is as good as RB for other n and ϕ1.

4. Concluding Remarks

We have established a large sample validity of the stationary bootstrap method for the OLSE of AR(1)
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model. A small sample study showed that the stationary bootstrapping is better than the residual-based
bootstrapping. The developed theory would be useful in establishing a large sample validity of the
OLSE-based stationary bootstrapping prediction interval. This issue will be investigated for a more
general ARMA(p, q) model in a future study.

A choice of the tuning parameter is important because performance heavily depends on the choice.
In our proposed bootstrap estimator combined with the stationary bootstrap, one way for tuning the
parameter ρ of the geometric distribution for the block length in the stationary bootstrap can be done
as the data-driven choice ρ∗ which is a function of the sample size n and of the finite order p of AR(p)
model, given {y1−p, . . . , yn}, as follows:

ρ∗ = arg min E
∣∣∣∣∣∣∣∣Var∗

(
ϕ̂∗ − ϕ̂

)∣∣∣∣∣∣∣∣ = arg min E
∣∣∣∣∣∣∣∣E∗ (X∗′X∗)−1

∣∣∣∣∣∣∣∣ ,
where ||A|| = (λmax(A′A))1/2 is the maximum eigenvalue of a matrix A and where the last equality can
be implied in the proof of Theorem 1 in Appendix. Derivation of ρ∗ would not be simple and may be
a challenging work.

Appendix: Proof of Theorem 1

It is well-known that
√

n[ϕ̂ − ϕ]
d−→ N(0, σ2

aΓ
−1) where Γ is the (p + 1) × (p + 1) positive definite

covariance matrix. It is enough to show that
√

n[ϕ̂∗ − ϕ̂] has the same limiting distribution.
We recall that the least squares estimator ϕ̂ satisfies

√
n
[
ϕ̂ − ϕ

]
=

(
X′X

n

)−1 (
1
√

n

)
X′a

d−→ N
(
0, σ2

aΓ
−1

)
along with (

X′X
n

)−1
p
−→ Γ−1 and

(
1
√

n

)
X′a

d−→ N
(
0, σ2

aΓ
)
. (A.1)

Now in order to show that
√

n[ϕ̂∗ − ϕ̂] has the same limiting distribution, observe that

√
n
[
ϕ̂∗ − ϕ̂

]
=

(
X∗′X∗

n

)−1 (
1
√

n

)
X∗′ã∗.

Since Yi and Y∗i are the ith rows of X and X∗, respectively, we have

X′X =
n∑

i=1

Yi
′Yi and X∗′X∗ =

n∑
i=1

Y∗i
′Y∗i .

First, we show that
∑n

i=1 Y∗i
′Y∗i /n and

∑n
i=1 Y′iYi/n have the same limiting in probability.

Let Ui,r be the sum of observations in block B(i, r) = {Yn j : i ≤ j ≤ i + r − 1}, i.e., Ui,r =∑i+r−1
j=i Y′n jYn j. Let sτ = L1 + L2 + · · · + Lτ and use∣∣∣∣∣∣∣1n

n∑
i=1

Y∗i
′Y∗i −

1
n

n∑
i=1

Y′iYi

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣1n

n∑
i=1

Y∗i
′Y∗i −

1
n

sτ∑
i=1

Y∗i
′Y∗i

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣1n

sτ∑
i=1

Y∗i
′Y∗i −

1
n

n∑
i=1

Y′iYi

∣∣∣∣∣∣∣ . (A.2)
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It will be shown in Lemma 1 below that the first term of the right-hand side of (A.2) tends to 0 in
(conditional) probability.

Lemma 1.

1
n

sτ∑
i=n+1

Y∗i
′Y∗i

p∗
−→ 0.

Proof: Recalling the definition of τ, and letting sτ−1 = L1 + · · ·+ Lτ−1, R1 = n− sτ−1 and R = Lτ −R1,
we have that

∑sτ
i=n+1 Y∗i

′Y∗i is the sum of observations in B(Iτ, Lτ), after deleting the first R1(= n− sτ−1)
of them. Note that R, conditional on (R1, sτ−1), has a geometric distribution with mean 1/ρ. This
follows from the memoryless property of the geometric distribution. Hence, (1/n)

∑sτ
i=n+1 Y∗i

′Y∗i is
equal in distribution to (1/n)UI,R, where I is uniform on {1, . . . , n}. It is enough to show that the
(conditional) mean and variance of (1/n)UI,R tends to 0.

We have

E∗[UI,R|R] =
n∑

i=1

1
n

i+R−1∑
j=i

Y′n jYn j

 = R

1
n

n∑
i=1

Y′iYi

 , (A.3)

and thus

1
n

E∗[UI,R] =
1
n

E∗[E∗[UI,R|R]] =
1

nρ

1
n

n∑
i=1

Y′iYi

 = Op

(
1

nρ

)
p
−→ 0 (A.4)

by (A.1) and since nρ→ ∞. Also we have

1
n2 Var∗[UI,R] =

1
n2 E∗

[
Var∗(UI,R|R)

]
+

1
n2 Var∗

[
E∗(UI,R|R)

]
.

Its second term (1/n2)Var∗[E∗(UI,R|R)] is equal to

1
n2 Var∗

R 1
n

n∑
i=1

Y′iYi

 = 1 − ρ
n2ρ2

1
n

n∑
i=1

Y′iYi

 1
n

n∑
i=1

Y′iYi

′ = Op

(
1

n2ρ2

)
p
−→ 0.

For the first term (1/n2)E∗[Var∗(UI,R|R)], consider

Var∗(UI,R|R) = E∗
[
UI,RU′I,R|R

]
− E∗

[
UI,R|R

] (
E∗

[
UI,R|R

])′ .
We observe

E∗
[
UI,RU′I,R|R

]
=

n∑
i=1

1
n

i+R−1∑
j=i

Y′n jYn j


i+R−1∑

j=i

Y′n jYn j


′

=
R
n

 n∑
i=1

Y′iYi

  n∑
i=1

Y′iYi

′
and then, by this and by (A.3), we have

E∗
[
Var∗(UI,R|R)

]
=

1
nρ

 n∑
i=1

Y′iYi

  n∑
i=1

Y′iYi

′ − 1
n2ρ2

 n∑
i=1

Y′iYi

  n∑
i=1

Y′iYi

′ .
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Thus, by (A.1)

1
n2 E∗[Var∗(UI,R|R)] = Op

(
1

nρ

)
+ Op

(
1

n2ρ2

)
p
−→ 0.

Therefore the (conditional) variance of (1/n)UI,R tends to 0, and the first term of the right-hand side
of (A.2) tends to 0 in (conditional) probability. �

Now we show in Lemma 2 below that the second term of the right-hand side of (A.2) tends to 0
in (conditional) probability.

Lemma 2. ∣∣∣∣∣∣∣1n
sτ∑

i=1

Y∗i
′Y∗i −

1
n

n∑
i=1

Y′iYi

∣∣∣∣∣∣∣ p∗
−→ 0.

Proof: Recalling the definition of Ui,r =
∑i+r−1

j=i Y′n jYn j, we have

1
n

sτ∑
i=1

Y∗i
′Y∗i =

1
n

τ∑
i=1

UIi,Li .

Just as in Politis and Romano (1994) and Hwang and Shin (2012a), since τ = nρ + Op(
√

nρ), we
consider a sequence m = mn with m/(nρ)→ 1, and it suffices to show that∣∣∣∣∣∣∣1n

m∑
i=1

UIi,Li −
1
n

n∑
i=1

Y′iYi

∣∣∣∣∣∣∣ p∗
−→ 0.

The left-hand side is less than or equal to∣∣∣∣∣∣∣1n
m∑

i=1

UIi,Li −
ρ

m

m∑
i=1

UIi,Li

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣ ρm

m∑
i=1

UIi,Li − ρE∗[UI1,L1 ]

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣ρE∗[UI1,L1 ] − 1

n

n∑
i=1

Y′iYi

∣∣∣∣∣∣∣ . (A.5)

The first term of (A.5) is less than or equal to∣∣∣∣∣∣∣
m∑

i=1

UIi,Li

∣∣∣∣∣∣∣
∣∣∣∣∣1n − ρ

m

∣∣∣∣∣ =
∣∣∣∣∣∣∣ 1
nm

m∑
i=1

UIi,Li

∣∣∣∣∣∣∣ |m − nρ| = op

(
1

nρ

)
p∗
−→ 0,

the last equality holds by (A.4). The second term of (A.5),

ρ

∣∣∣∣∣∣∣ 1
m

m∑
i=1

UIi,Li − E∗[UI1,L1 ]

∣∣∣∣∣∣∣ = op (ρ)
p∗
−→ 0,

where the last equality holds by the weak law of large numbers of i.i.d. sequence {UIi,Li : i = 1, 2, . . . }
as m→ ∞. For the third term of (A.5), we calculate E∗[UI1,L1 ]. Similarly to above, we have

E∗[UI1,L1 ] = E∗
[
E∗(UI1,L1 |L1)

]
= E∗

L1

1
n

n∑
i=1

Y′iYi

 = 1
ρ

1
n

n∑
i=1

Y′iYi

 .
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Thus the third term of (A.5) is zero, and the desired result in Lemma 2 holds. �

Therefore, according to Lemma 1 and Lemma 2 along with (A.2),
∑n

i=1 Y∗i
′Y∗i /n and

∑n
i=1 Y′iYi/n

have the same limiting Γ in probability.
Now we will verify in Lemma 3 below the convergence of (1/

√
n )X∗′ã∗ in distribution.

Lemma 3. (
1
√

n

)
X∗′ã∗

d∗−→ N
(
0, σ2

aΓ
)
.

Proof: We write

X∗′ã∗ =
(
Y∗1
′,Y∗2

′, . . .Y∗n
′) (â∗1, â∗2, . . . , â∗n)′ = n∑

i=1

Y∗i
′â∗i

and

1
√

n

n∑
i=1

Y∗i
′â∗i =

1
√

n

sτ∑
i=1

Y∗i
′â∗i −

1
√

n

sτ∑
i=n+1

Y∗i
′â∗i .

Let Vi,r =
∑i+r−1

j=i Y′n jâ
∗
j , which is related to the observations in block B(i, r). By the same argument

as above, (1/
√

n )
∑sτ

i=n+1 Y∗i
′â∗i is equal in distribution to (1/

√
n )VI,R, and we have

E∗[VI,R] =
1
n

n∑
i=1

∞∑
r=1

ρ(1 − ρ)r−1E∗[Vi,r] =
1
n

n∑
i=1

∞∑
r=1

ρ(1 − ρ)r−1
i+r−1∑

j=i

Y′n jE
∗
[
â∗j

]
= 0

since E∗[â∗j] = (1/n)
∑n

i=1 âi = 0, and that

Var∗[VI,R] = E∗
[
VI,RV ′I,R

]
=

1
n

n∑
i=1

∞∑
r=1

ρ(1 − ρ)r−1E∗
[
Vi,rV ′i,r

]
=

1
n

n∑
i=1

∞∑
r=1

ρ(1 − ρ)r−1E∗

i+r−1∑

j=i

Y′n jâ
∗
j


i+r−1∑

l=i

Y′nlâ
∗
l


′

=
1
n

n∑
i=1

∞∑
r=1

ρ(1 − ρ)r−1

i+r−1∑
j=i

i+r−1∑
l=i

Y′n jYnlE∗
[
â∗j â
∗
l

] .
Letting σ̂2

a = (1/n)
∑n

i=1 â2
i , and noting that E∗[â∗j â

∗
l ] = σ̂2

a if j = l, and 0 otherwise, we have

Var∗[VI,R] =
∞∑

r=1

ρ(1 − ρ)r−1r

1
n

n∑
i=1

Y′iYiσ̂
2
a

 = E[R]σ̂2
a

1
n

n∑
i=1

Y′iYi

 = σ̂2
a

ρ

(
1
n

X′X
)

(A.6)

and thus

1
n

Var∗[VI,R] = Op

(
1

nρ

)
p
−→ 0
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by (A.1) and by the fact that σ̂2
a → σ2

a in probability. Therefore,

1
√

n

sτ∑
i=n+1

Y∗i
′â∗i

p∗
−→ 0.

Recalling the definition of Vi,r =
∑i+r−1

j=i Y′n jâ
∗
j , we have

1
√

n

sτ∑
i=1

Y∗i
′â∗i =

1
√

n

τ∑
i=1

VIi,Li .

Similarly to above, for a sequence m = mn with m/(nρ)→ 1, it suffices to show that

1
√

n

m∑
i=1

VIi,Li

d∗−→ N
(
0, σ2

aΓ
)
. (A.7)

Note that E∗((1/
√

n )
∑m

i=1 VIi,Li ) = 0 and {VIi,Li : i = 1, 2, . . . } is i.i.d. sequence since {(Ii, Li) : i =
1, 2, . . . } are i.i.d. Thus, by (A.6), we have

Var∗
 1
√

n

m∑
i=1

VIi,Li

 = m
n

Var∗(VI1,L1 ) =
mσ̂2

a

nρ

(
1
n

X′X
)

p
−→ σ2

aΓ.

The left-hand side of (A.7) is equal to 1
√

n

m∑
i=1

VIi,Li −
√
ρ

m

m∑
i=1

VIi,Li

 + √
ρ

m

m∑
i=1

VIi,Li . (A.8)

The first term of (A.8) is less than or equal to∣∣∣∣∣∣∣
m∑

i=1

VIi,Li

∣∣∣∣∣∣∣
∣∣∣∣∣∣ 1
√

n
−

√
ρ

m

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣ 1
m

m∑
i=1

VIi,Li

∣∣∣∣∣∣∣ ∣∣∣√m − √nρ
∣∣∣ √m

n
= op (1)

p∗
−→ 0.

To verify the asymptotic normal distribution of the second term of (A.8) (and thus that of (1/
√

n )X∗′
ã∗), let Z∗j be the ( j + 1)th component of (1/

√
n)X∗′ã∗ for j = 0, 1, . . . , p, and let z∗i, j be the ( j + 1)th

component of VIi,Li for j = 0, 1, . . . , p and for each i = 1, . . . ,m. That is, we observe

(
Z∗0 ,Z

∗
1 , . . . ,Z

∗
p

)′
=

1
√

n
X∗′ã∗, and

√
ρ

m

m∑
i=1

VIi,Li =

√
ρ

m

m∑
i=1

(
z∗i,0, z

∗
i,1, . . . , z

∗
i,p

)′
.

By above convergence, (Z∗0 , Z
∗
1 , . . . ,Z

∗
p)′ and

√
ρ/m

∑m
i=1(z∗i,0, z

∗
i,1, . . . , z

∗
i,p)′ have the same limiting.

For (s0, s1, . . . , sp) ∈ Rp+1, and for each i = 1, . . . ,m, we have E∗(
∑p

j=0 s jz∗i, j) = 0 and

Var∗
 p∑

j=0

s jz∗i, j

 = p∑
j=0

s2
jVar∗

(
z∗i, j

)
+ 2

∑
j<l

s jslCov∗
(
z∗i, j, z

∗
i,l

)
�

p∑
j=0

s2
j
σ2

aγ j j

ρ
+ 2

∑
j<l

s jsl
σ2

aγ jl

ρ

in probability by (A.6), where γ jl is the ( j, l)-component of Γ.
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Since {VIi,Li = (z∗i,0, z
∗
i,1, . . . , z

∗
i,p)′ | 1 ≤ i ≤ m} are i.i.d. vectors with mean zero under P∗, we obtain

(for ι =
√
−1),

E∗
[
eιt

(∑p
j=0 s jZ∗j

)]
� E∗

[
eι(t/

√
m)∑m

i=1
√
ρ
(∑p

j=0 s jz∗i, j
)]
=

(
E∗

[
eι(t/

√
m)√ρ

(∑p
j=0 s jz∗1, j

)])m

=

1 + ιt
√
ρ

√
m

E∗
 p∑

j=0

s jz∗1, j

 − t2ρ

2m
(1 + o(1))E∗

 p∑
j=0

s jz∗1, j

2 
m

�

1 − t2

2m
(1 + o(1))

 p∑
j=0

s2
jσ

2
aγ j j + 2

∑
j<l

s jslσ
2
aγ jl


m

,

where “�” is such that an � bn denotes an/bn → 1 as n → ∞, i.e., an and bn have the same limiting.
The last term tends to exp

{
−(t2/2)σ2

a

(∑p
j=0 s2

jγ j j + 2
∑

j<l s jslγ jl

)}
as n→ ∞ (m→ ∞). Therefore,

s0Z∗0 + · · · + spZ∗p
d∗−→ N

0, σ2
a

 p∑
j=0

s2
jγ j j + 2

∑
j<l

s jslγ jl


 ,

and thus by the Cramér-Wold device, (1/
√

n)X∗′ã∗
d∗−→ N(0, σ2

aΓ), and the proof of Lemma 3 is com-
pleted. �

The proof of Theorem 1 is obtained by Lemma 1, Lemma 2 and Lemma 3.
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