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Abstract

This manuscript summarized advances in bootstrap methods for long-range dependent time series data. The
stationary linear long-memory process is briefly described, which is a target process for bootstrap methodologies
on time-domain and frequency-domain in this review. We illustrate time-domain bootstrap under long-range
dependence, moving or non-overlapping block bootstraps, and the autoregressive-sieve bootstrap. In particular,
block bootstrap methodologies need an adjustment factor for the distribution estimation of the sample mean in
contrast to applications to weak dependent time processes. However, the autoregressive-sieve bootstrap does
not need any other modification for application to long-memory. The frequency domain bootstrap for Whittle
estimation is provided using parametric spectral density estimates because there is no current nonparametric
spectral density estimation method using a kernel function for the linear long-range dependent time process.

Keywords: autoregressive-sieve bootstrap, block bootstrap, frequency domain bootstrap, long-
memory

1. Introduction

The bootstrap method, introduced by Efron (1979), is a computer-intensive method for a large class
of statistical inference issues without any strict structural assumptions on the underlying data process.
The bootstrap method has developed its application into broad fields of statistical inference ever since
Efron suggested it. The bootstrap is often utilized because it has better performance than the conven-
tional approaches as well as provides an empirical and efficient statistical inference for complicated
problems; consequently, existing methodology is unable to produce analytical answers for statistical
inference (e.g. Shin and Hwang, 2015; Yoo, 2015). Nonetheless, the bootstrapping idea is not a
panacea for all problems of statistical inferences because it cannot be equally effectively applicable
to all of random processes. In this paper, we consider stationary and strongly linear time dependent
processes as well as provide different types of bootstrap methods for effective applications and their
limitations on time-domains and frequency-domains.

Singh (1981) provided an example to show that the independently and identically distributed (iid)
bootstrap, proposed by Efron (1979) does not work under dependent data structure, which is an im-
portant consideration to construct bootstrap methods for time series that should appropriately reflect
the dependent structure for underlying data. Two approaches of “data block™ mechanism and data-
transformation have been proposed to capture the underlying dependent structure. First, the data-
blocking mechanism is that each block consists of consecutive groups of data points in time and we
resample data-block, not the original time points with replacement as if the data-blocks are iid data.
The data-block mechanism can help capture or preserve the dependent structure of the original time
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series in each block. Another approach is the data-transformation approach to treat data dependence
using data-transformation, which can help weaken the covariance structure, without perfectly twisting
dependencebecause transformed points canbe regarded as independent or asymptotically independent.

Recently, the issue of the time series analysis is to reckon with the dependent-type or dependent-
strength in a stationary time process {X;}. If r(k) = Cov(Xy; Xi), kK > 0, demonstrates the process
autocovariance function with lag k, then in general we may categorize the processes as weakly or
short-range dependent (SRD) if the autocovariance decays fast enough (i.e., r(k) — 0 as k — o) so
that 377, [r(k)| < oo holds, or as strongly or long-range dependent (LRD) processes by a slow covari-
ance decay, r(k) ~ Ck™% as k — oo for some C > 0 and 0 < 6 < 1 satisfying Yooy IP(k)] = oo (Beran
et al., 2013). The LRD processes can generally be applied in astronomy, hydrology and economics
(Beran et al., 2013; Henry and Zaffaroni, 2003; Montanari, 2003). Statistical issues between SRD and
LRD time processes can change dramatically; in addition, it is more complicate to develop appropriate
resampling methods. For example, Lahiri (1993) showed that the block bootstrap, which is generally
valid under weak dependence (Kiinsch, 1989; Liu and Singh, 1992), is not directly applicable to es-
timate the distribution of a sample mean of a class of long-memory processes. However, Kim and
Nordman (2011) proposed block bootstrap methods with the adjustment factor for strongly dependent
time processes and provided behaviors of optimal block sizes based on a large-sample variance of a
sample mean of stationary linear LRD processes.

The autoregressive (AR)-sieve bootstrap method takes the idea of sieve approximation (Grenander,
1981) to generate the sieve-estimated process. The AR-sieve bootstrap for weakly dependent time
processes was introduced by Kreiss (1992) and has been developed by Biihlmann (1997) and Bickel
and Biihlmann (1999). In addition, Choi and Hall (2000) showed that the AR-sieve bootstrap was
more powerful than block bootstrap methods under causal linear SRD processes based on the error
in the coverage probability of a one-sided confidence interval. Kapetanios and Psaradakis (2006) and
Poskitt (2008) applied the AR-sieve bootstrap to causal linear LRD time processes.

Dahlhaus and Janas (1996) established a frequency-domain bootstrap (FDB) method for ratio
statistics under SRD using a data-transformation (i.e., Fourier transform) to weaken the data de-
pendence structure. The FDB methodology calculates the periodogram ordinates and estimates the
spectral density function feasibly by the nonparametric method. FDB methodology independently re-
samples scaled periodogram ordinates, (i.e., periodogram ordinates divided by corresponding spectral
density estimates) to create bootstrap versions of spectral estimators. Similar approaches to the FDB
methodology had been developed for nonparametric spectral density estimation (Franke and Hirdle,
1992; Nordgaard, 1992). The nonparametric spectral density estimator under SRD is a critical factor
for the FDB method of Dahlhaus and Janas (1996) and other frequency domain resampling methods
under SRD (Kreiss and Paparoditis, 2003). Kim and Nordman (2013) proposed the FDB on Whit-
tle estimation under LRD because appropriate nonparametric estimators of the spectral density are
unavailable under LRD which is uniformly consistent on the entire spectrum (0, rr].

Many researches review bootstrap methods for iid data and weakly dependent time processes.
Even though the bootstrap under LRD is still developing, this review can incur the interest of resam-
pling methods under LRD for researchers who handle long-memory processes. This paper reviews
bootstrap methods for strongly dependent time processes with block bootstrap, AR-sieve bootstrap
and FDB methodologies. The remaining of the paper is as follows. Section 2 provides stationary
linear LRD time processes. In Section 3, the bootstrap methods under LRD have been provided and
described. We will apply the bootstrap methods to a real data in Section 4 and give concluding remarks
and future research topics for the proposed methodologies in Section 5.
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2. Long-memory processes

The stationary linear time series with the process mean EX; = u € R is defined as

Xt =/.1+ij8[_]', (21)
JEZ

where {&,} are iid innovations with the mean E¢; = 0 and its variance E.s,2 < oo. The real-valued {b;}
sequence of constants satisfies }; jcz b? < co. We classify the time series {X;} as exhibiting the LRD
time series if the autocovariances r(k) = Cov(Xy, X) satisfy a slow decay condition

r(k) ~ o’k k- oo, (2.2)

for some 6 € (0,1] and o> > 0. If 6 = 1, the process is called the short-memory. Another condition
for the LRD time process is that the partial autocovariance sum Y};_, [r(k)| = O(n'~?) diverges as
n — oo (Beran et al., 2013; Robinson, 1995). However, SRD time series has the autocovariances r(k)
decaying rapidly to 0 as the lag k — oo satisfying )}, |r(k)| < co.

To characterize the LRD property, this paper considers statistical inference about the behavior of
a large-sample variance estimator of a sample mean, X, = n~! >, X;. Denote 0',21,0 = nVar(X,). The
condition of the LRD property (2.2) implies that

lim 075 = 0%, > 0, (2.3)
holds for a constant 0'20’9 depending on 6 € (0, 1]. It means that the sample variance estimator, Var(X,,),
of a sample mean under the linear LRD, decays at a slower rate O(n~%) as n — oo than the typical
O(n™") rate under SRD. Note that § = 1 for o-ﬁ o gives SRD and (2.3) is appropriate for specifying
sample mean behavior under SRD. For linear LRD processes (2.1), if the condition (2.3) holds, we
have a normal limit for the scaled sample mean as follows (Davydov, 1970; Ibragimov and Linnik,
1971, Theorem 18.6.5):

n’ ()_(n —,u) < N(O, 0'20‘0) asn — oo. 2.4)

Note that for the bootstrap methodology for a sample mean, a sum of independently resampled block
averages has a large-sample normal distribution with a variance matching that of n?2(X,, — ).

Another property of long-memory processes, {X;}, can be shown as integral spectral density de-
fined as

[y

1
) = 5= Y ke, 2.5)

k=—00

where A € [1 = (-, ] and ¢« = V-1 behaving

lim IAI"g() = C, (2.6)

for some 6 € (0, 1] and a positive constant C > 0. The process {X;} is also referred as SRD time
processes when 6 = 1, and LRD processes when 0 < 6 < 1. This dependence-type classification is
a common, in which LRD spectral density entails a pole of g(-) at the origin, frequency zero (Beran
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Table 1: True autocorrelation, p(1), and finite autocorrelation, p, (1) with lag of 1 for four different FARIMA
processes for true parameters, AR = 0.3 and MA = —0.4 with true long-memory parameters, 6 = 0.1, 0.5,0.9
using standard normal innovation

Process 0 p(1) pn(1) with n =
100 250 500 1,000 5,000 10,000 100, 000
0.1 0.82 0.49 0.61 0.65 0.69 0.70 0.73 0.74
FARIMAC(O, d, 0) 0.5 0.33 0.26 0.30 0.31 0.32 0.33 0.33 0.33
0.9 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.05
0.1 0.92 0.73 0.80 0.82 0.84 0.86 0.87 0.87
FARIMAC(1,d, 0) 0.5 0.61 0.53 0.58 0.59 0.60 0.60 0.61 0.61
0.9 0.36 0.32 0.35 0.35 0.36 0.36 0.36 0.36
0.1 0.48 0.07 0.18 0.21 0.27 0.28 0.32 0.33
FARIMA(O,d, 1) 0.5 -0.12 -0.16 -0.13 -0.13 -0.13 -0.13 -0.12 -0.12
0.9 -0.31 -0.33 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31
0.1 0.75 0.40 0.50 0.53 0.60 0.61 0.64 0.65
FARIMAC(1,d, 1) 0.5 0.21 0.15 0.19 0.19 0.21 0.21 0.21 0.21
0.9 —0.05 -0.04 -0.04 —0.05 -0.05 -0.05 -0.05 -0.05

et al., 2013; Hosking, 1981). The periodogram I, is an estimator of true spectral density g. The
periodogram ordinates are defined as

2

In(/l) = , Aell

1
2nn

n
DX = Xpye
t=1

The scaled periodogram, I,(4)/g(1) has asymptotically exponential distribution with mean 1 for sta-
tionary time processes with a bound spectral density (Beran et al., 2013). For linear long-memory,
more complicated assumptions for the underlying processes are needed to investigate the asymptotic
results of scaled periodogram behavior.

We show some property of linear LRD processes using the autocorrelation with lag 1 in the simu-
lation study. We consider several types of FARIMA(p, d, q) processes (Adenstedt, 1974; Granger and
Joyeux, 1980; Hosking, 1981) with

¢(B)(1 - BY'X, = i + y(B)e,, Q2.7)

where {g;} are iid mean-zero variables, B is a lag operator, and the long-memory parameter is given
by 8§ = 1-2d for d € [0,1/2). Note that ¢(B) = 1 — ¢1B — ¢B — --- — ¢,B" and y(B) =
1 +y B+ ---+y,B? The FARIMA processes are well-known stationary linear long-memory pro-
cesses. We consider FARIMA(O, 4, 0), FARIMAC(1, d, 0) with an AR parameter 0.3, FARIMA(0, d, 1)
with an MA parameter —0.4 and FARIMAC(1,d, 1) with an AR parameter 0.3 and an MA param-
eter —0.4 focusing on a variety of long-memory parameters 6 € {0.1,0.5,0.9} and sample sizes
n € {100, 250,500, 1000, 5000, 10000, 100000}. We also consider the autocorrelation estimator of
lag of 1 as a function of sample means, sometimes called ratio statistics. First, we compute the true
autocorrelation with lag 1 and then estimate autocorrelation estimates with lag 1 from the generated
data. Finally, we examine behavior of finite autocorrelation estimates for each FARIMA process. The
Monte Carlo (MC) simulation runs were considered as M = 5, 000.

Table 1 shows that the finite autocorrelation values with lag of 1 slowly converges to the true
autocorrelation under LRD where 6 € (0,0.5), called stronger LRD. For example, the finite autocor-
relation with lag of 1 for the FARIMA(O, d, 0) process with 8 = 1 —2d = 0.1 is p,(1) = 0.49 for small
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samples, n = 100, which is far from the theoretical autocorrelation with lag of 1, p(1) = 0.82. This
difference may lead to lower coverage probabilities for 95% confidence intervals under stronger LRD
when the theoretical autocorrelation with lag of 1 is used. That is, as the strength of dependence under
LRD increases, the difference between finite variance-covariance and true variance-covariance may
be larger than LRD processes for 6 € [0.5, 1), called weaker LRD. Therefore, as mentioned in Section
1, this is another key consideration for application and construction of bootstrap methodologies for
long-memory.

3. Bootstrap methods under long-range dependence
3.1. Block bootstrap

In this subsection, we describe the block bootstrap methods to apply the process mean of a long-
memory process. We denote £ as an integer block size, which is less than sample size n. For the
moving block bootstrap (MBB) proposed and developed by Kiinsch (1989) and Liu and Singh (1992),
we make data-blocks as B; = (X, ..., X;¢-1) with starting point 1 < i < n— £ + 1. Thus, the total
number of blocks is n — £ + 1. We independently resample m = |n/{] data-blocks from the original
series Xi,..., X, with replacement from {B,..., B,—¢+1} and then concatenate the sampled blocks
as if the blocks are regarded as the iid observations. Carlstein (1986) proposed the non-overlapping
block bootstrap (NBB) using a non-overlapping data-block set {By¢;-1) : i = 1,2,...,m}. For the
NBB, the number of dat-blocks is [n/£]. The remaining process of the NBB is the same as MBB. In
general, using the larger number of blocks for the MBB leads that the MBB has better efficiency than
the NBB for bias or variance estimation under SRD (Hall et al., 1995; Kiinsch, 1989; Lahiri, 1999).
We provide the block bootstrap procedures as:

Block bootstrap procedure:

1. Define the block size £ < n and compute the number of blocks for the resampling procedure,
m = |n/{]

2. Construct data-blocks for the MBB with the number of total blocks, » == n — € + 1 and for the
NBB with " = |n/{]

3. Generate bootstrap replicates from the data-block set as:

(a) For a MBB series X7, ..., Xy, N = m{, we generate [, ..., I, from iid uniform random vari-
ables {I;,...,1,_¢1}).

(b) For a NBB series Xj,..., X}, N = m{, we generate [}, ..., I, from iid uniform random vari-
ables {1, ..., Ii4eon-1))-

4. Make a MBB/NBB series X7, ..., Xy, where N = m¢.

For long-memory, Lahiri (1993) proved that the MBB fails whenever it produces non-normal lim-
its for X,, = 2%, Xi/n (i.e., by non-linear transformations of Gaussian processes). Kim and Nordman
(2011) established the validity of block bootstrap distribution estimation for the process mean of lin-
ear LRD processes, without assumption of a specific form for the long-memory covariances, that is,
the block bootstrap remains consistent over a practical class of linear LRD processes, which need not
be a causal assumption (b; = 0 for j < 0in (2.1)) as assumed for the AR-sieve bootstrap (cf. Poskitt,
2008). Kim and Nordman (2011) showed that the bootstrap sample mean should be “inflated” by an
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adjustment factor a, = m!=%/2 for long-memory. Then, the adjustment factor, a,, for the sample mean
under LRD constructs m!"%/2N2Xx = (m(?)!/2X7, as the correct version of n2X,,. For weak depen-
dent time processes, there is no inflation because = 1 leads to m!~®/?> = 1. Hence, for either MBB
or NBB, under some assumptions (cf. Kim and Nordman, 2011, Theorem 1), we have the following
result:

sup |P. (nﬁfg ()_(;, - EJ_(,’(,) < x) - P(ni (X,, —,u) < x)‘ -0,

xeR

where E, and P, are probability and expectation of the bootstrap distribution given the data.

In general, the variance of the MBB estimator is smaller (2/3) than that of the NBB estimator under
SRD (Kiinsch, 1989; Lahiri, 2003). However, Kim and Nordman (2011) studied that the large-sample
variance of MBB and NBB estimators can match under stronger LRD, 6 € (0, 0.5) even though the
MBB method has more available blocks compared to the NBB method, which implies that the MBB
method completely loses its advantage of variance estimation over the NBB method.

3.2. Autoregressive-sieve bootstrap

This subsection describes an AR-sieve bootstrap method for stationary causal linear time processes,
proposed by Biihmann (1997) and Kreiss (1988,1992) under weak dependence and extended to long-
memory series by Kapetanios and Psaradakis (2006) and Poskitt (2008). Suppose that we have a data
realization X1, ..., X}, having the process mean EX; = u and its autocovariances r(k), k > 0, can first
be approximated by a stationary autoregressive process {Y;} of the AR order p. Then, we minimize
the distance

2

P
E|X - - > B (X~ 1)
j=1
to obtain reasonable (i, ...,[,). Thus, the pseudo time process {Y;} can be defined as

P
Yi=p+ Zﬁj(Yz—j —/1) + ey,
=

where B = (B1,....8,)" = F;lrp are the coefficients of the best-linear predictor of X; — y in terms of
(Xi-1—H, ..., Xi—p—p), and {e,} are approximately iid random variables with mean Ee; = 0 and variance
Ee,2 = r(0) — B’T,6. In addition, r, is a vector of autocovariances defined as r, = (r(1),..., r(p)T

and I'), is the p X p matrix with r(k — j) with the (k, j)th entry of r,. The AR-sieve bootstrap method
manufactures a sample size n bootstrap rendition of {¥;} for intimating the distribution of the original
time process, {Xi,...,X,}. In general, the sieve approximation with {¥;} to {X,} should improve as
the AR order p increases according to the sample size n. The procedure of the AR-sieve bootstrap is
provided as follows.

AR-sieve bootstrap procedure:
1. Define the autoregressive order p = p, depending on the sample size.

2. Estimate the coefficients (,81,,, e, ﬁpn) from observed data X, ..., X, utilizing the solution to the
sample version of Yule-Walker equations (Brockwell and Davis, 1991).
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3. Define related residuals &, = (X, — X,,) — Z;’zlﬁjn(X,_j -X), p+1<t<n.

4. Generate each e’ independently from a set of the centered residuals {¢; — (n — p)~! Z;fzp R
p+1<t<n}

5. Construct the AR-sieve bootstrap replicates from
- p A -
Y;F:Xn—i-Zﬂjn(Yttj_Xn)+€;k, t>p+1,
=1

where we define Y = --- = Yy = X,

Note that we generate Y7,..., Y,’:+q
Based on the generated last n sample, we construct the AR-sieve bootstrap mean such as n??(X* —
X,,) for causal linear LRD processes. It is valid to approximate the distribution of n?(X, — u) for
linear, LRD processes under certain conditions (Kapetanios and Psaradakis, 2006). For short-memory,
Biihlmann (1997) and Choi and Hall (2000) illustrated that the AR-sieve bootstrap method can give
more accurate distribution estimation in comparison to the block bootstrap methods. However, the
condition of the process for the AR-sieve bootstrap is more stringent than the block bootstrap methods,
for example the process satisfies the conditions of causality, linearity and often invertibility. The AR
order is p, = |2(log n)?| as fixed or p, = |10 + Zfzj as estimated where / is obtained to minimize
an information criterion over 1 < i < 10log,,»n (Biihlmann,1997; Poskitt, 2008). Kapetanios and
Psaradakis (2006) and Poskitt (2008) under LRD applied the fixed order to long-memory.

with a burn-in of length ¢ > 1. Usually, we assign g as 300.

3.3. Frequency domain bootstrap on Whittle estimation

The frequency domain bootstrap method under LRD does not require any assumptions about the full
probability structure of time series; in addition, the FDB procedures are inspired because the scaled
periodogram I,(1)/g(1) asymptotically has the exponential limiting distribution with the parameter
of 1 at a set of A € (=, 7] (Beran et al., 2013; Brockwell and Davis, 1991). In addition, I,(4;) for
0 < Ay <--+ <A < mare asymptotically independentat A; = 27 j/n, j=1,2,...,L = |(n—1)/2]. The
advantage of the FDB is not necessary to mimic the covariance structure of underlying processes, but
the FDB is available for ratio statistics such as autocorrelation (Dahlhaus and Janas, 1996). As men-
tioned in Section 1, appropriate nonparametric spectral density estimators, in particular using a kernel
function, are currently open problems under LRD. Thus, for analogous purposes of periodogram scal-
ing in a FDB method under LRD, the FDB method cannot be applied to the LRD processes directly.
Therefore, Kim and Nordman (2013) proposed the semiparametric approach for application to the
FDB method under LRD using parametric spectral density estimators on the Whittle likelihood be-
cause Whittle estimation is possibly applicable to a valid FDB method under LRD, through re-scaling
periodogram ordinates with a parametric spectral density estimator. For this semiparametric approach,
the parametric spectral density is defined as

2 75
g =g(Liog.6) = 2/ (L60), A€l = (-] 3.1)

holds at some true parameters (0'3, 6p). Whittle estimation (Whittle, 1953) looks for determining the
parameter values at which the theoretical distance measure as
1 (" A
+— f _ 8D G2

1 i g o2
w(c?,0)= — 1 02,0)+ —=—" _L41=1 —
(o- ) 47rj(; {ogg( 7 ) g(/l;0'2,0)} Og[27r ar Jo g(1;02,0)
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achieves its minimum (Dzhaparidze, 1986). Under mild conditions, the true parameter values ((7(2), 6o)
are then determined as the unique solutions to the score equations 0W(c, 6)/8(c, 6) = 0,41, or equiv-
alently

" ﬁ 1 _ " g _ 2
f(ae—f(/l;e))g(/l)d/l—op and 2 | f(/l;H)d/l_o-’ 3.3)

where f(4;6) is defined in (3.1). The Whittle estimators 0, of 6 are formally defined as a solution of
the periodogram-based estimating functions

I \_
LO)=~ ;( 5 (/lj;e))ln (1)) =0,. (3.4)

defined by a Riemann integral approximation to (3.3) that substitutes the periodogram I,(-) as an
estimator of the true spectral density g(-) at discrete Fourier frequencies A; = 2rj/nfor j=1,2,..., L.
Moreover, the corresponding Whittle estimator of o is computed by

2 4m 1 _

Now, the statistical inference with the FDB estimator concentrates on the distribution P( \/ﬁ(@n -
6y) < x), x € R for the Whittle estimator 6,. An bootstrap estimator 9: for the Whittle estimator is
also obtained according to the following FDB procedure. Conditional on the original time series data
X1, ..., X, which has properties of a linear long-memory process,

FDB procedure:
1. Obtain the Whittle estimates (8, 0'2) from the original data.

2. Define the parametric spectral density estimates g,(4;) = g(1;; 62 2 0,) at discrete Fourier frequen-
cies j =1,2,..., L using Whittle estimates.

3. Studentized periodogram ordinates &; = I,(1;)/8,(4;), j=1,2,...,L
4. Obtain rescaled &; = &;/é. where é. = Zlf=1 e;/L.
5. Randomly sample ej, ..., e; from the empirical distribution of {&;; j = 1,2,...,L}.

6. Define a bootstrap version of periodogram ordinates as I7(41;) = ej.gf,,(/lj) for j=1,2,...,L

7. Calculate bootstrap Whittle estimators & from the equation

i Haef ]13 (1) - [%ﬁ]g (1))

=0,. (3.6)

Jj=1

8. Construct the bootstrap versions V(8% — 8,) of (8, — 6p) so that P,(yn(d: — 6,) < x) is the
bootstrap estimator of P( \/71(@ —6p) < x), x e RP,
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Since the periodogram scaling scheme for the FDB under LRD using the parametric spectral
density estimates is different from the general one in the original FDB method for short-memory
(Dahlhaus and Janas, 1996) using the nonparametric spectral density estimates using the kernel method.
Currently, the similar kernel density estimation under LRD estimators does not seemingly exist. How-
ever, the Whittle estimation method is valid for either short- and long-memory allowing a different
re-scaling technique for the periodogram. The reason to apply the rescaling technique of studentized
periodogram ordinates in Step 4 is to eliminate unnecessary bias in the FDB re-creation (Dahlhaus
and Janas, 1996), as the studentized periodogram at a fixed frequency 0 < A < & has an asymptotic
exponential distribution with mean parameter 1 under SRD/LRD (Yajima, 1989). Steps 6-8 repro-
duce the structural relationship between Whittle estimators 6, and the true parameters 6, at the level
of the bootstrap.

4. Data example

We illustrate the MBB, the AR-sieve and the FDB for Whittle estimation under LRD with data about
the yearly minimal water levels of the Nile River from 622 to 1284 measured at the Roda gauge
in Egypt (Tousson, 1925). The total observed sample size is n = 663. Figure 1(a) displays Nile
River data assuming this data is a realization of a stationary linear LRD process {X;} satisfying (2.1),
(2.2), and (2.5). In this data example, we are interested in obtaining confidence interval estimates
for the process mean, EX; = y and the long-memory parameter, 6 using parametric approaches and
bootstrap approaches. We compute 95% confidence interval estimates for the process mean using
MBB and AR-sieve bootstrap methods and for the long-memory parameter using the FDB for Whittle
estimation under LRD. For the parametric approach, we fit Nile River data to an ARFIMA model
based on fractionally differenced white noise from the R-package arfima. Figures 1(b) and (c) show
the partial autocorrelation and autocorrelation functions, which may lead us to consider Nile River
data as the LRD time process. The AIC model selection method indicates that an FARIMA(0, d, 0)
model with d = (1 — 6)/2 is an appropriate model for Nile River data. The estimate of the long-
memory parameter is § = 0.245, which implies Nile River data is a stronger LRD process. The
confidence interval for & is (0.124,0.346) and the estimated process mean is 4 = 1148.13 and its
confidence interval is (1063.77,1232.49). Figure 1(d) shows that the theoretical ACF based on the
estimated values, § and [t looks similar to the ACF in Figure 1(c). From this result, Nile River data
can be regarded as the FARIMA(0, d, 0) with d = 0.382 and /1 = 1148.13.

First, we compute the confidence interval estimates for the process mean, u using the MBB
and AR-sieve bootstrap methods. For the MBB, we use 4 fixed block sizes £ = |Cn'/3| where
C = 0.2,05,1,2, displayed in Table 2. We also use 4 fixed AR orders, p, = LC(loglO(n))ZJ with
C =0.5,1,2,3. The calculated orders are illustrated in Table 2. Table 2 shows that the estimated con-
fidence from the parametric approach is narrower than other bootstrap results. As Kim and Nordman
(2011) mentioned that for the stronger LRD process, the smaller block size is close to the optimal
block size for the statistical inference of the process mean, Table 2 shows that the confidence interval
using the smaller block size is closer than those with larger block sizes. The AR-sieve bootstrap is
relatively insensitive to various AR-orders compared to the MBB for a diversity of block sizes, which
reflects the finding of Kim and Nordman (2011).

We estimated the confidence interval for the long-memory parameter, 6 using the FDB for Whittle
estimation under LRD. The confidence interval estimate for the long-memory parameter is (0.147, 0.32
3), which is slightly narrower than the confidence interval estimates from the parameter approach,
which is one of results from Kim and Nordman (2013).
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Nile River Minima, yearly 622-1284 PACF of Nile River Minima, yearly 622-1284
©
o
8 | © |
‘<_r o
L
% o (5() g N
= & g o
g g 2 }
£ B S VM o ..
=
o ‘M\HMMMH‘M 1,”MJM bt it
S T JHWWWWMW wax me
] bttt RETIELSREEL SR T
T T T T T T T ! T T T T T T
0 100 200 300 400 500 600 0 20 40 60 80 100
Year Lag
(@) (®)
ACF of Nile River Minima, yearly 622-1284 Theoretical ACF curves based on fitted models
o ]
@ ] © ]
o o
S o
) w
<3 8«
o
o e}
,,,,,,,,,,,, (<2
o HMHHH}HH&HHmeHHmw
: ‘ : ‘ : : o T \ T T T \
0 20 40 60 80 100 0 20 40 | 60 80 100
Lag a9
©) (@

Figure 1: Plots of the yearly minimal water levels of the Nile River from 622 to 1284 (a), its PACF (b), ACF (c)
and theoretical ACF based (d) on the parameter estimates.

Table 2: Confidence intervals for the process mean of the yearly minimal water levels of the Nile River from
622 to 1284 using the MBB and AR-sieve bootstrap methods considering various block sizes and AR orders,
respectively

Moving block bootstrap AR-sieve bootstrap
=2 =4 =8 =27 Pn =3 pn =1 pn =15 pn =23
Lower limit 1045.48 1020.58 989.29 936.28 1130.67 1124.33 1118.88 111597
Upper limit 1250.78 1275.69 1306.97 1359.98 1165.59 1171.93 1177.38 1180.29

5. Discussion and conclusion

A main challenge in extension of the block, AR-sieve and FDB bootstraps under weak dependence
to LRD time processes is that the autocovariance is not summable and the spectral density has a
pole at zero under LRD, which indicates the need to research if bootstrap methods constructed under
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weak dependence are workable for long-memory. Therefore, we cannot directly apply the bootstrap
techniques under weak dependence to LRD time processes since the properties of the two weakly
and strongly dependent processes have different dependent structures. For example, Subsection 3.1
describes that the adjustment factor for the block bootstrap under LRD is necessary to capture depen-
dent structure of the underlying process in contrast to block bootstraps under weak dependence. In
addition, Kim et al. (2013) showed that the block size for the blockwise empirical likelihood depends
on the underling processes that implies that optimal block sizes depend on the magnitude of depen-
dence of the original processes as well as the sample size. For example, data from the underlying
process AR(1) with AR = 0.9 or AR(1) with AR = —0.2 need the different optimal block sizes with
the same sample size. Hence, the optimal block sizes both depend on the sample size and the strength
of dependence of underlying processes. Thus, for the block bootstrap under LRD, the optimal block
selection method is an important and open question. The nonparametric spectral density estimation
under LRD should be utilized in order to apply the FDB proposed by Dahlhaus and Janas (1996) to
long-memory processes. However, the nonparametric method does not exist under LRD and remains a
very important and open question for frequency-based bootstrap methods under LRD. If the method is
developed, we can use the nonparametric spectral density estimator for the original FDB proposed by
Dahlhaus and Janas (1996) and the AR-aided periodogram bootstrap (Kreiss and Paparoditis, 2003)
under LRD.
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