• 제목/요약/키워드: BIPV

검색결과 226건 처리시간 0.025초

태양광발전시스템의 건물 적용에 대한 인식 조사 연구 (A Survey of the Recognition of Photovoltaic System for Building Application)

  • 이충국;유권종;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제23권1호
    • /
    • pp.17-28
    • /
    • 2003
  • This study aims to investigate and analyze the overall recognition of the photovoltaic system for the application of BIPV(Building Integrated Photovoltaic) in Korea. For this purpose, a survey was carried on through questionnaires answered by 6 groups of experts such as construction engineers, registered architects, mechanical engineers, electrical engineers, university or college professors, and others who are ranked high in their companies or universities or colleges and who mostly seem to be eager to participate in the development of the PV system and to make a business of the system. The results of the survey are as follows: 1. About 95% of those experts who answered the questionnaire have known about renewable energy, and 93% of them are interested in solar energy as alternative energy 2. Host experts have a lot of information on the solar energy system, but have scanty information on the PV system. 3. The experts in the educational and research field have researched for the reasonable period of the participation in the development of the PV system and the period of making a business of the system. They judge that companies in the mechanical and electrical field will participate in the development of the PV system and will make a business of the system in 5 years. 4. The experts have thought that the PV system is designed not for economy but for the environment of the earth and that PV system technology in Korea is much lower than that in the advanced countries. 5. The experts hesitate to participate in the development of the PV system and to make a business of the system because they have little confidence in the economy of the PV system now and because they have thought that they will bear a great financial burden of construction cost 6. The experts judge that it is most desirable to apply the PV system to the rooftops of buildings. And they are greatly interested in the BIPV.

효율개선을 위한 다중제어 인버터방식의 아치형 PV System 성능 분석 (The Arch Type PV System Performance Evaluation of Multi Controlled Inverter for Improve the Efficiency)

  • 이용미;박정민
    • 한국산학기술학회논문지
    • /
    • 제13권11호
    • /
    • pp.5452-5457
    • /
    • 2012
  • 태양전지를 실제적인 건물의 한 구성요소로 이용하는 건물일체형 태양광발전(BIPV : Building Integrated Photovoltaic) 시스템은 기존의 건물재료를 대체하여 재료비용 및 건설비용의 절감효과를 가져다주며 건물의 미적인 가치를 높여주는 장점을 가지고 있다. BIPV에 대한 연구가 유럽 및 미국, 일본 등의 나라에서 오래전부터 활발히 수행되고 있으며, 시장성 또한 무한 확대되고 있다. 아치형 PV 시스템은 PV 어레이의 직병렬 연결 상태 및 아치각에 따라 효율 특성이 상이하지만 이에 관한 분석은 미흡하며, 아치형 PV 시스템을 설계함에 있어서 미적인 요소만 고려하고 이러한 발전효율에 관한 요소는 전혀 고려되지 않은 채 설계되고 있다. 본 논문에서는 아치형 PV 시스템의 효율에 관한 파라미터인 위도와 경도, 온도 및 일사량, 아치각, 시스템 구성에 따른 각종 손실 등 이에 대한 세부적인 기술검토와 각 장비들의 특성을 정합시켜 아치형 PV 시스템의 최적화를 이루어 효율을 개선시키고자 한다. 아치형 PV 시스템의 효율개선을 위하여 다중제어 인버터 방식을 제안하고 시뮬레이션 툴인 Solar Pro를 이용하여 평판형 및 다양한 아치형 PV 시스템을 구성하여 운전특성을 비교 분석하였다.

BIPV모듈의 제조공정에 관한 실험적 연구 (An Experiment Study on Manufacturing process of BIPV Module)

  • 안영섭;김성태;이성진;윤종호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.54-54
    • /
    • 2010
  • In this study, the correlation between temperature and the gel-content of the module were analyzed through experiments. Amorphous thin-film solar cell used in this experiment has a visible light transmission performance of 10%. In addition, ethylene vinyl acetate(EVA) film and the clear glass have been used for the modulation. The most important process is to laminate the module in the manufacturing process of BIPV(Building integrated photovoltaic) module. Setting parameters of laminator in the lamination process are temperature, pressure and time. Setting conditions significantly affect the durability, watertightness and airtightness of module. The most important factor in the setting parameters is temperature to satisfy the gel-contents. The bottom and top surface temperature of module are measured according to setting temperature of laminator. The results showed $145^{\circ}C$ of max temperature of the bottom surface and $128^{\circ}C$ of max temperature of top surface on the module at the temperature condition of $160^{\circ}C$. And at the another temperature condition of laminator with $150^{\circ}C$, the max temperature do bottom and top are $117^{\circ}C$ and $134^{\circ}C$ respectively. The temperature difference between bottom and top of the module occurred, that is because heat has been blocked by the clear glass and the bottom of the cells absorb the heat from the laminator. In this particular, the temperature difference between setting temperature of the laminator and the surface temperature of the module showed $15^{\circ}C$, because the heat of laminator plate is transferred to the surface of the module and heat is lost at this time. As a results, gel-content showed 94.8%, 88.7% and 81.7% respectively according to the setting temperature $155^{\circ}C$, $150^{\circ}C$ and $145^{\circ}C$ of the laminator. In conclusion, the surface temperature of module increases, the gel-contents is relatively increased. But if the laminator plate temperature is too high, the gel-content shows rather decline in performance. Furthermore, the temperature difference between setting temperature and the surface temperature of the module is affected by laminating machine itself and the temperature of module should be considered when setting the laminator.

  • PDF

독립형 에너지 하우스 전력시스템에서의 BIPV용 Optimizer에 대한 연구 (A Study on Optimizer for Building Integrated Photovoltaic System of Energy Independent House)

  • 조영찬;신덕식
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.229-230
    • /
    • 2018
  • 본 논문은 태양광 기반의 '독립형 에너지 하우스'의 전체 전력 시스템과 태양광 외장재 모듈의 에너지를 효율적으로 최대 수급하기 위한 BIPV(Building Integrated PV)용 Optimizer의 개발에 대해 기술한다.

  • PDF

AZO 투명 전극 기반 반투명 실리콘 박막 태양전지 (AZO Transparent Electrodes for Semi-Transparent Silicon Thin Film Solar Cells)

  • 남지윤;조성진
    • 한국전기전자재료학회논문지
    • /
    • 제30권6호
    • /
    • pp.401-405
    • /
    • 2017
  • Because silicon thin film solar cells have a high absorption coefficient in visible light, they can absorb 90% of the solar spectrum in a $1-{\mu}m$-thick layer. Silicon thin film solar cells also have high transparency and are lightweight. Therefore, they can be used for building integrated photovoltaic (BIPV) systems. However, the contact electrode needs to be replaced for fabricating silicon thin film solar cells in BIPV systems, because most of the silicon thin film solar cells use metal electrodes that have a high reflectivity and low transmittance. In this study, we replace the conventional aluminum top electrode with a transparent aluminum-doped zinc oxide (AZO) electrode, the band level of which matches well with that of the intrinsic layer of the silicon thin film solar cell and has high transmittance. We show that the AZO effectively replaces the top metal electrode and the bottom fluorine-doped tin oxide (FTO) substrate without a noticeable degradation of the photovoltaic characteristics.

건물일체형 투명 PV복층창의 설치조건에 따른 단위출력당 발전특성 분석연구 (A Study on the Power Performance Measurement of Transparent Thin-film PV Windows of BIPV Depending on the Inclined Angle)

  • 안영섭;송종화;김석기;이성진;윤종호
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.55-60
    • /
    • 2008
  • This study is on the analysis of power output of transparent thin-film PV windows which are integrated into the building envelope instead of traditional windows. 3 installation angles of vertical, horizontal and $30^{\circ}C$ inclination are investigated. To measure power output of PV windows, full scale mock-up house was designed and constructed. The power performance of PV window system was analyzed for horizontal angle, declination angle and vertical angle according to incline angle. Monitoring data are gathered from November 2006 to August 2007 and statistical analysis is performed to analysis a characteristics of power performance of transparent PV windows. Results show that annual power output of PV window with horizontal angle is 844.4kWh/kWp/year, declination angle 1,060kWh/kWp/year and vertical angle 431.6 kWh/kWp/year.

  • PDF