• Title/Summary/Keyword: BEM method

Search Result 408, Processing Time 0.024 seconds

An Analysis of the Flow and Sound Field of a Ducted Axial Fan (덕트가 있는 축류홴의 유동 및 음향장 해석)

  • Jeon, Wan Ho;Chung, Ki Hoon;Lee, Duck Joo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.208-217
    • /
    • 1999
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy, and the Helmholtz-Kirchhoff BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM for thin body is used to calculate the sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF

A study of fundamental solution of BEM for orthotropic materials (직교이방성 재료에 대한 경계요소법(BEM)의 기본해에 관한 연구)

  • 이갑래;조상봉;최용식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.51-58
    • /
    • 1990
  • According to the developments of various composite materials, it seems to be very important to evaluate the strength and fracture behavior of composite materials. When the composite material is considered as orthotropic material, the characteristic equation of orthotropic material have complex roots. If characteristic roots are equal, the fundamental solutions of BEM become singular ones. This paper analyse the fundamental solutions of the singular problem of orthotropic material using the analogous method to isotropic material.

  • PDF

Transient Elastodynamic Analysis By BEM Using DDM (DDM과 경계요쇼법을 이용한 동탄성 해석)

  • Shin, Dong-Hoon;Owatsiriwong, Adisorn;Park, Han-Gyu;Park, Kyung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.534-535
    • /
    • 2009
  • This paper deals with BEM analysis of transient elastodynamic problems using domain decomposition method and particular integrals. The particular method is used to approximate the acceleration term in the governing equation. The domain decomposition method is examined to consider multi-region problems. The domain of the original problem is subdivided into sub-regions, which are modeled by the particular integral BEM. The iterative coupling employing Schwarz algorithm is used for the successive update of the interface boundary conditions until convergence is achieved. The numerical results, compared with those by ABAQUS, demonstrate the validity of the present formulation.

  • PDF

Analysis of Crack Behavior of dissimilar materials in Brazed Interface By BEM (이종재 브레이징 계면에서의 균열거동해석)

  • 오환섭;김시현;김성재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.269-274
    • /
    • 2001
  • Applications of Brazing in the studying fields such as High-Speed Machining are very increasing in various industry fields. Therefore, Applying to the fracture mechanics by numerical analysis method is very important to analyse the crack problem Dissimilar Materials in Brazed Interface. In this study, Stress intensity Factor (S.I.F) is analysed to investigate crack behavior on the crack tip of dissimilar materials in brazed interface such as a Hardmetal and a HSS by two dimensional(2-D) Boundary Element Method (BEM). Kelvin's solution was used as a fundamental solution in BEM analysis and stress extrapolation method was used to determine Stress Intensity Factor.

  • PDF

Numerical Analysis of Waveguide T-Junction (T-접합 도파관의 수치적 해석)

  • Cheon, Changyul;Chung, Jin-Kyo
    • Journal of Industrial Technology
    • /
    • v.13
    • /
    • pp.25-31
    • /
    • 1993
  • This paper presents an analysis of microwave device component. An H-Plane waveguide component with arbitrary shape is analyzed using finite element method(FEM) cooperated with boundary element method(BEM). The finite element method(FEM) is applied to the junction region and the boundary element method(BEM) to the waveguide region. For the application of BEM in the waveguide structure, a ray representation of the waveguide Green's function is used. The proposed technique was applied to the analysis of the waveguide inductive junction to compare the numerical result with the result of the mode matching technique. The comparison showed good agreements between the two results. Transmitted powers were also computed in T-junction waveguides for the various shape of the junction area.

  • PDF

Analysis of the Stresses for Hydraulic Actuator Cylinders using Boundary Element Method (경계요소법을 이용한 유압 엑츄에이터 실린더의 응력해석)

  • Kim, O.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.104-109
    • /
    • 2001
  • The stress distributions of hydranlic actuator cylinder tube acting in uniform inner pressure were analysed by the boundary element method(BEM). STKM13C tube was utilized for machine structural purposes model, its inner radius was 100 mm and outer radius was 140 mm. Axial length was semi-infinite and the isoparametric element of BEM was used. Radial and tangential stresses are maximum(-20.3 MPa and 52 MPa) at the inner radius and the minimum at the outer radius of the hydraulic actuator cylinders for an industrial systems. Stress diminution ratio was about 0.6 MPa/mm. And then coincidence between the simulation techniques as exact results(Lame' equation) and finite element method(FEM) is found to be fairly good, showing that the proposed analysis by BEM is reliable.

  • PDF

The Effect evaluation of the hole near a crack tip by Boundary Element Method (경계요소법을 이용한 균열선단 원공의 영향 평가)

  • 이대영;김성재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.434-439
    • /
    • 2000
  • In this paper, in order to study the geometric factor effect of a circular hole near a crack tip in a semi-infinite plate, the Dimensionless Stress Intensity Factor, $F(=\frac K {\sigma {\sqrt{\pi a}}})$ is analyzed at the crack tip using a two Dimensional Boundary Element Method (BEM) program which is known as superior in Fracture Mechanics. Kelvin's solution was used as a fundamental solution in BEM analysis and displacement extrapolation method was used to determine Stress Intensity Factor.

  • PDF

A numerical parametric study on hydrofoil interaction in tandem

  • Kinaci, Omer Kemal
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.25-40
    • /
    • 2015
  • Understanding the effects of the parameters affecting the interaction of tandem hydrofoil system is a crucial subject in order to fully comprehend the aero/hydrodynamics of any vehicle moving inside a fluid. This study covers a parametric study on tandem hydrofoil interaction in both potential and viscous fluids using iterative Boundary Element Method (BEM) and RANSE. BEM allows a quick estimation of the flow around bodies and may be used for practical purposes to assess the interaction inside the fluid. The produced results are verified by conformal mapping and Finite Volume Method (FVM). RANSE is used for viscous flow conditions to assess the effects of viscosity compared to the inviscid solutions proposed by BEM. Six different parameters are investigated and they are the effects of distance, thickness, angle of attack, chord length, aspect ratio and tapered wings. A generalized 2-D code is developed implementing the iterative procedure and is adapted to generate results. Effects of free surface and cavitation are ignored. It is believed that the present work will provide insight into the parametric interference between hydrofoils inside the fluid.

A Numerical Calculation of Open Boundary Problem by Applying FEM and BEM Alternately (유한요소법과 경계요소법의 교호적용에 의한 무한영역해석)

  • Im, Jae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.130-132
    • /
    • 1999
  • The finite element method (FEM) is suitable for the analysis of a complicated region that includes nonlinear materials, whereas the boundary element method (BEM) is naturally effective for analyzing a very large region with linear characteristics. Therefore, considering the advantages in both methods, a novel algorithm for the alternate application of the FEM and BEM to magnetic field problems with the open boundary is presented. This approach avoids the disadvantages of the typical numerical methods with the open boundary problem such as a great number of unknown values for the FEM and non-symmetric matrix for the Hybrid FE-BE method. The solution of the overall problems is obtained by iterative calculations accompanied with the new acceleration method.

  • PDF

An Analysis of the Sound Stopband in Periodically Corrugated 2-D Ducts (반복 주름을 갖는 이차원 덕트의 음파차단 해석)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • In this paper, the occurrence of a stopband phenomenon when an acoustic wave propagates through periodically corrugated ducts is discussed using theoretical and BEM analyses. A 2-D duct with sinusoidally corrugated upper and lower walls is considered. When the magnitude of the sinusoidal corrugation is sufficiently small compared to the duct's height, the wave equation is solved with the multiple scaling perturbation method. Then stopbands for Bragg and non-Bragg resonances are computed from the condition where frequency becomes a complex number. A 2-D BEM analysis is performed to compute insertion loss of the duct, and stopbands are confirmed as predicted by analytical analysis.