• Title/Summary/Keyword: BEM:Boundary Element Method

Search Result 321, Processing Time 0.044 seconds

Two-dimensional Redistribution of Impurity considering Thermal Oxidation in silicon using BEM (BEM을 이용하여 열산화를 고려한 실리콘 내에서 불순물의 2차원 재분포에 관한 연구)

  • Kim, Hun;Hwang, Ho-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.370-374
    • /
    • 1988
  • This paper is concerned with the investigation of the impurity redistribution process in a two step diffusion. In integrated circuit technology, two step boron diffusion involving a deposition step followed by a drive-in step in commonly encounted. The drive-in process is usually performed in oxidizing atmosphere resulting in redistribution of impurity (boron) within the semiconductor. This paper proposes a new numerical analysis method; Bounary Element Method to determine impurity profile at the arbitrary point in domain by its coordinate and boundary value.

  • PDF

Analysis on the Stress of Hydraulic Cylinder for Large Vessel by Boundary Element Method (대형선박용 유압실린더에서 경제요소법을 이용한 응력해석)

  • 김옥삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.423-434
    • /
    • 1995
  • It was used boundary element method(BEM) and analysed axisymmetric problem to solve hydraulic cylinder for large vessel acting uniform internal pressure(25N/m super(2)) within elastic limit. This paper was utilized the carbon steel tubes for machine structural purposed model, inner radius was 150mm and outer radius was 250mm, axial length was semi-infinite and the isoparametric element was used. The important results obtained in this study were summarized as follows. Radial, tangential and shearing stress occured the maximum stresses(48, -20 and 34MPa) at the inner radius and the minimum stresses(32, -4 and 18MPa) at the outer radius of the hydraulic cylinder for large vessel. But negative signs have meaning compressive stress and stress diminution ratio was about 0.15MPa/mm. The use of isoparametric element raised accuracy and the increment of input data lessened the error in internal point but computer run-time was increased. The double node was improved the internal solutions to settle discontinuity at corner and the double exponential formula lessened error of stress value at boundary neighborhood. And then coincidence between the analytical and exact results is found to be fairly good, showing that the proposed analytical by BEM is reliable.

  • PDF

Boundary-Based Shape Design Sensitivity Analysis of Elastostatics Problems (정탄성학 문제에서 경계 기반 형상설계 민감도 해석)

  • Won Jun-Ho;Choi Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.149-156
    • /
    • 2006
  • A boundary-based design sensitivity analysis(DSA) technique is proposed for addressing shape optimization issues in the elastostatics problems. Sensitivity formula is derived based on the continuum formulation in a boundary integral form, which consists of the boundary solutions and shape variation vectors. Though the boundary element method(BEM) has been mainly used to obtain the boundary solution, the FEM is used in this paper because this is much more popular, and has greatly improved meshing and computing power recently. The advantage of the boundary DSA is that the shape variation vectors, which are also known as design velocity fields, are needed only on the boundary. Then, the step for determining the design velocity field over the whole domain, which was necessary in the domain-based DSA, is eliminated, making the process easy to implement and efficient. Problem of fillet design is chosen to illustrate the efficiency of the proposed method. Accuracy of the sensitivity is good with this method even by employing the free mesh for the FE analysis.

Sizing Design Sensitivity Analysis and Optimization of Radiated Noise from a Thin-body (박판 구조물의 방사 소음에 대한 크기설계 민감도 해석 및 최적 설계)

  • 이제원;왕세명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1038-1043
    • /
    • 2003
  • There are many industrial applications including thin-body structures such as fins. For the numerical modeling of radiation of sound from thin bodies, the conventional boundary element method (BEM) using the Helmholtz integral equation fails to yield a reliable solution. Therefore, many researchers have tried to solve the thin-body acoustic problems. In the area of the design sensitivity analysis (DSA) and optimization methods, however, there has been just a few study reported. Especially fur the thin-body acoustics, however, no further study in the DSA and optimization fields has been reported. In this research, the normal derivative integral equation is adopted as an analysis formulation in the thin-body acoustics, and then used for the sizing DSA and optimization. Since the gradient-based method is used for the optimization, it is important to have accurate gradients (design sensitivities) of the objective function and constraints with respect to the design variables. The DSA formulations are derived through chain-ruled derivatives using the finite element method (FEM) and BEM by using the direct differentiation and continuum variation concepts. The proposed approaches are implemented and validated using a numerical example.

  • PDF

Analysis of Relative Contributions of Tonal Noise Sources in Volute Tongue Region of a Centrifugal Fan (원심팬 볼루트 영역내 순음 소음원의 상대적 기여도 분석)

  • Heo, Seung;Kim, Daehwan;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • Interaction between the unsteady flow emitted from the blade of the centrifugal fan and the volute tongue region of fan duct is known as the main noise source of the centrifugal fan. In this paper, the relative contributions of the volute tongue region of the centrifugal fan is analyzed to utilize as the foundation data of low noise design. The internal hybrid CAA (Computational Aero-Acoustics) method is used to predict noise radiated from the main noise source. This method is the noise prediction technique using CFD (Computational Fluid Dynamics), Acoustic analogy, and BEM(Boundary Element Method). The relative contributions of the centrifugal fan volute tongue region using the hybrid CAA method show that the region between the cut-off and the scroll has high contribution than the region between the cut-off and the outlet and the hub region of blade has high contribution than the shroud region of blade. These results is utilized as the important data for the development of low noise centrifugal fan.

Shape Design Sensitivity Analysis of Thermal Conduction Problems using Commercial Software ANSYS (상용 소프트웨어 ANSYS를 이용한 열전도문제의 형상설계 민감도 해석)

  • Choe, Ju-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.645-652
    • /
    • 2000
  • A method for shape design sensitivity analysis is proposed utilizing commercial software ANSYS for thermal conduction problems. While the sensitivity formula is derived analytically by introduing adjoint variable concept, sensitivity calculation in practice as well as the primal and adjoint solution of thermal conduction is performed using the ANSYS very easily. Since the formula always takes boundary integral form, sensitivity evaluation in ANSYS requires a little more addition of post-processing routine which involves evaluation of boundary variable from the obtained solution. Though the BEM has been used as a better tool for this purpose, the present study shows it can also be calculated using any kind of analysis code such as ANSYS since the formula is based on analytic nature. Therefore the present study provides a new and efficient way of optimization which was not possible before using commercial software. The usefulness of the method is illustrated via a weight minimization problem of thermal diffuser.

Progressive Fracture Analysis of Concrete by Boundary Element Method and its Stabilizing Technique (경계요소법에 의한 콘크리트의 파괴진행해석 및 안정화 기법)

  • 송하원;전재홍
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.205-212
    • /
    • 1996
  • This paper presents progressive fracture analysis of concrete using boundary element method and its stabilizing technique. To determine ultimate strength and to predict nonlinear behavior of concrete during progressive crack growth, the modelling of fracture process zone is done based on Dugdale-Barenblatt model with linear tension-softening curve. We regulate displacement and traction boundary integral equation of solids including crack boundary and analyze progressive fracture of concrete beam and compact tension specimen. Also a numerical technique which considers the growth of stress-free crack of concrete during the analysis and removes snapback of postpeak behavior is proposed.

Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.;Mehar, Kulmani
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.629-639
    • /
    • 2018
  • In this paper, the vibroacoustic responses of baffled laminated composite sandwich flat panel structure under the influence of harmonic excitation are studied numerically using a novel higher-order coupled finite-boundary element model. A numerical scheme for the vibrating plate has been developed in the frame work of the higher-order mid-plane kinematics and the eigen frequencies are obtained by employing suitable finite element steps. The acoustic responses are then computed by solving the Helmholtz wave equation using boundary element method coupled with the structural finite elements. The proposed scheme has been implemented via an own MATLAB base code to compute the desired responses. The validity of the present model is established from the conformance of the current natural frequencies and the radiated sound power with the available benchmark solutions. The model is further utilized to scrutinize the influence of core-to-face thickness ratio, modular ratio, lamination scheme and the support condition on the sound radiation characteristics of the vibrating sandwich flats panel. It can be concluded that the present scheme is not only accurate but also efficient and simple in providing solutions of the coupled vibroacoustic response of laminated composite sandwich plates.

Seismic response of a rigid foundation embedded in a viscoelastic soil by taking into account the soil-foundation interaction

  • Messioud, Salah;Sbartai, Badreddine;Dias, Daniel
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.887-903
    • /
    • 2016
  • This study analyses the seismic response of a three-dimensional (3-D) rigid massless square foundation resting or embedded in a viscoelastic soil limited by rigid bedrock. The foundation is subjected to harmonic oblique seismic waves P, SV, SH and R. The key step is the characterization of the soil-foundation interaction by computing the impedance matrix and the input motion matrix. A 3-D frequency boundary element method (BEM) in conjunction with the thin layer method (TLM) is adapted for the seismic analysis of the foundation. The dynamic response of the rigid foundation is solved from the wave equations by taking into account the soil-foundation interaction. The solution is formulated using the frequency BEM with the Green's function obtained from the TLM. This approach has been applied to analyze the effect of soilstructure interaction on the seismic response of the foundation as a function of the kind of incident waves, the angles of incident waves, the wave's frequencies and the embedding of foundation. The parametric results show that the non-vertical incident waves, the embedment of foundation, and the wave's frequencies have important impact on the dynamic response of rigid foundations.

Electric Field Distribution of XLPE due to Position of Void (보이드 위치에 따른 XLPE 전계분포)

  • Park, Hyoung-Jun;Kim, G.S.;Shin, H.T.;Lee, J.P.;Kim, G.Y.;Lee, S.W.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.220-223
    • /
    • 2003
  • This paper is aimed at determining the e-field distribution by apply voltage of air void, which can be generate air void in the XLPE cable for ultra high voltage. E-field distribution had an effect in XLPE due to the type and position of void, compared and studied. This method of analysis is based on the quasi-static electromagnetic 3D simulation program by boundary element method (BEM): Applied AC 3[kV], discretization of 2000 elements, 4 angular periodicity, The result of experiment indicate that E-field distribution appeared the highest levels on the void position of electrode 2[nm] outer boundary and shape of the smallest inner angle in the void. This will serve to explain the XLPE cable degradation studied of possible, connected cable variation of position and shape of void effects to e-field concentration.

  • PDF