DOI QR코드

DOI QR Code

Analysis of Relative Contributions of Tonal Noise Sources in Volute Tongue Region of a Centrifugal Fan

원심팬 볼루트 영역내 순음 소음원의 상대적 기여도 분석

  • 허승 (부산대학교 기계공학부) ;
  • 김대환 (부산대학교 기계공학부) ;
  • 정철웅 (부산대학교 기계공학부)
  • Received : 2013.07.29
  • Accepted : 2013.12.09
  • Published : 2014.01.31

Abstract

Interaction between the unsteady flow emitted from the blade of the centrifugal fan and the volute tongue region of fan duct is known as the main noise source of the centrifugal fan. In this paper, the relative contributions of the volute tongue region of the centrifugal fan is analyzed to utilize as the foundation data of low noise design. The internal hybrid CAA (Computational Aero-Acoustics) method is used to predict noise radiated from the main noise source. This method is the noise prediction technique using CFD (Computational Fluid Dynamics), Acoustic analogy, and BEM(Boundary Element Method). The relative contributions of the centrifugal fan volute tongue region using the hybrid CAA method show that the region between the cut-off and the scroll has high contribution than the region between the cut-off and the outlet and the hub region of blade has high contribution than the shroud region of blade. These results is utilized as the important data for the development of low noise centrifugal fan.

원심팬 날개 깃에서 발생한 와류와 원심팬 볼루트 사이의 상호작용은 원심팬의 주요한 소음원으로 알려져 있다. 본 연구에서는 저소음 설계의 기초 자료로 활용하기 위하여 원심팬의 주요한 소음원 영역으로 고려되는 원심팬 볼루트 영역을 세분화하여 볼루트 영역내의 상대적 기여도를 분석한다. 주요한 소음원으로부터 방사되는 소음을 예측하기 위해 내부 음장용 복합 전산공력음향학(CAA, Computational Aero-Acoustics) 방법을 사용한다. 이 방법은 전산유체역학(CFD, Computational Fluid Dynamics)과 음향상사법(Acoustic Analogy), 그리고 경계요소법(BEM, Boundary Element Method)을 사용하여 원심팬 내부 유동장으로부터 방사한 소음을 원심팬 외부 음향장에서 예측하는 방법이다. 복합 CAA 방법을 이용한 원심팬 볼루트 영역내의 소음원의 상대적 기여도 분석은 컷-오프영역으로부터 출구영역보다 컷-오프영역으로부터 원심팬 스크롤영역이 전체 소음에 대한 기여도가 높고, 날개 깃의 쉬라우드 영역보다 허브 영역이 전체 소음에 대한 기여도가 높다는 것을 보여준다. 이러한 결과는 향후 저소음 원심팬 개발을 위한 유용한 자료로 활용될 것이다.

Keywords

References

  1. W. Neise, "Noise reduction in centrifugal fans: a literature survey," J. Sound Vib. 45, 375-403 (1976). https://doi.org/10.1016/0022-460X(76)90394-1
  2. W. Neise, "Review of noise reduction methods for centrifugal fans," American Society of Mechanical Engineers, 15-20 (1981).
  3. S. Velarde-Suarez, R. Ballesteros-Tajadura, J. P. Hurtado-Cruz, C, and Santolaria-Morros, "Experimental determination of the tonal noise sources in a centrifugal fan,"J. Sound Vib. 295, 781-796 (2006). https://doi.org/10.1016/j.jsv.2006.01.049
  4. S. Velarde-Suarez, R. Ballesteros-Tajadura, C. Santolaria-Morros, and B. Pereiras-Garcia, "Reduction of the aerodynamic tonal noise of a forward curved centrifugal fan by modification of the volute tongue geometry," Applied Acoust. 69, 225-232 (2008). https://doi.org/10.1016/j.apacoust.2006.10.009
  5. M. Tournour, Z. El Hachemi, A. Read, F. Mendonca, F. Barone, and R. Durello, "Investigation of the tonal radiated by subsonic fans using the aero-acoustic analogy," Fan noise 2003 International symposium, Senlis, 2003.
  6. S. Lee, S. Heo, and C. Cheong, "Prediction and reduction of internal blade-passing frequency noise of the centrifugal fan in a refrigerator," Int. J. Refrig. 33, 1129-1141 (2010). https://doi.org/10.1016/j.ijrefrig.2010.03.006
  7. S. Heo, C. Cheong, and T.-H. Kim, "Development of low noise centrifugal fan a refrigerator using inclined S-shaped trailing edge," Int. J. Refrig. 34, 2076-2091 (2011). https://doi.org/10.1016/j.ijrefrig.2011.07.003
  8. S. Heo, D. Kim, C. Cheong, and T.-H Kim, "Prediction of internal broadband noise of a centrifugal fan using stochastic turbulent synthetic model," KSNVE. 21,1138-1145, 2011. https://doi.org/10.5050/KSNVE.2011.21.12.1138
  9. S. Heo, D. Kim, and C. Cheong, "Broadband noise prediction of the ice-maker centrifugal fan in a refrigerator using hybrid CAA method and FRPM technique" (in Korean), J. Acoust. Soc. Kr. 31, 391-398, 2012. https://doi.org/10.7776/ASK.2012.31.6.391
  10. C. Cheong, P. Joseph, Y. Park, and S. Lee, "Computation on aeolian tone from a circular cylinder using source models," Applied Acoust. 69, 110-126 (2008). https://doi.org/10.1016/j.apacoust.2006.10.004

Cited by

  1. Development of High-performance/low-noise Centrifugal Fan Circulating Cold Air Inside a Household Refrigerator by Reduction of Vortex Flow vol.26, pp.4, 2016, https://doi.org/10.5050/KSNVE.2016.26.4.428
  2. Efficient Prediction of Broadband Noise of a Centrifugal Fan Using U-FRPM Technique vol.34, pp.1, 2015, https://doi.org/10.7776/ASK.2015.34.1.036
  3. Numerical and Experimental Investigation on Improvement of Flow and Noise Performances of Ice-fan Flow Piping System of Household Refrigerator vol.28, pp.6, 2018, https://doi.org/10.5050/KSNVE.2018.28.6.694