• Title/Summary/Keyword: BE-algebra

Search Result 653, Processing Time 0.029 seconds

Derivation Algorithm of State-Space Equation for Production Systems Based on Max-Plus Algebra

  • Goto, Hiroyuki;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • This paper proposes a new algorithm for determining an optimal control input for production systems. In many production systems, completion time should be planned within the due dates by taking into account precedence constraints and processing times. To solve this problem, the max-plus algebra is an effective approach. The max-plus algebra is an algebraic system in which the max operation is addition and the plus operation is multiplication, and similar operation rules to conventional algebra are followed. Utilizing the max-plus algebra, constraints of the system are expressed in an analogous way to the state-space description in modern control theory. Nevertheless, the formulation of a system is currently performed manually, which is very inefficient when applied to practical systems. Hence, in this paper, we propose a new algorithm for deriving a state-space description and determining an optimal control input with several constraint matrices and parameter vectors. Furthermore, the effectiveness of this proposed algorithm is verified through execution examples.

NORMAL INTERPOLATION ON AX=Y AND Ax=y IN A TRIDIAGONAL ALGEBRA $ALG\mathcal{L}$

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.535-539
    • /
    • 2007
  • Given operators X and Y acting on a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX=Y. In this article, we show the following: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let $X=(x_{ij})\;and\;Y=(y_{ij})$ be operators in $\mathcal{H}$. Then the following are equivalent: (1) There exists a normal operator $A=(a_{ij})\;in\;Alg\mathcal{L}$ such that AX=Y. (2) There is a bounded sequence $\{\alpha_n\}\;in\;\mathbb{C}$ such that $y_{ij}=\alpha_jx_{ij}\;for\;i,\;j\;{\in}\;\mathbb{N}$. Given vectors x and y in a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that Ax=y. We show the following: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let $x=(x_i)\;and\;y=(y_i)$ be vectors in $\mathcal{H}$. Then the following are equivalent: (1) There exists a normal operator $A=(a_{ij})\;in\;Alg\mathcal{L}$ such that Ax=y. (2) There is a bounded sequence $\{\alpha_n\}$ in $\mathbb{C}$ such that $y_i=\alpha_ix_i\;for\;i{\in}\mathbb{N}$.

CAUCHY-RASSIAS STABILITY OF A GENERALIZED ADDITIVE MAPPING IN BANACH MODULES AND ISOMORPHISMS IN C*-ALGEBRAS

  • Shin, Dong Yun;Park, Choonkil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.617-630
    • /
    • 2011
  • Let X, Y be vector spaces, and let r be 2 or 4. It is shown that if an odd mapping $f:X{\rightarrow}Y$ satisfies the functional equation $${\hspace{50}}rf(\frac{\sum_{j=1}^{d}\;x_j} {r})+\;{\sum\limits_{\iota(j)=0,1 \atop {\sum_{j=1}^{d}}\;{\iota}(j)=l}}\;rf(\frac{\sum_{j=1}^{d}{(-1)^{\iota(j)}x_j}}{r}) \\({\ddag}){\hspace{160}}=(_{d-1}C_l-_{d-1}C_{l-1}+1)\;{\sum\limits_{j=1}^{d}\;f(x_j)}$$ then the odd mapping $f:X{\rightarrow}Y$ is additive, and we prove the Cauchy-Rassias stability of the functional equation in Banach modules over a unital $C^*$-algebra. As an application, we show that every almost linear bijection $h:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ of a unital $C^*$-algebra ${\mathcal{A}}$ onto a unital $C^*$-algebra ${\mathcal{B}}$ is a $C^*$-algebra isomorphism when $h(2^nuy)=h(2^nu)h(y)$ for all unitaries $u{\in}{\mathcal{A}}$, all $y{\in}{\mathcal{A}}$, and $n=0,1,2,{\cdots}$.

A Study on Analysis of a Process Similarity for the Service Reuse (서비스 재사용을 위한 프로세스 유사도 분석에 관한 연구)

  • Hwang, Chi-Gon;Yun, Chang-Pyo;Jung, Kye-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.238-240
    • /
    • 2014
  • A cloud computing include a SaaS frameworks be able to use a software as a service. Despite the existing service depending on the difference of the tenant and the use, if the service provider re-establish a service, they are required resources In terms of costs and managerial. So we propose a technique for analysis software structure using the process algebra to reuse existing software. A process algebra analyze the structure of the software, express in business process or different languages and verify that it can be reused. As CCS in a process algebra is useful to convert the business process or XML, by using this, we structure a process and propose meta storage for comparison and management a structured document.

  • PDF

PROPERTIES OF GENERALIZED BIPRODUCT HOPF ALGEBRAS

  • Park, Junseok;Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.323-333
    • /
    • 2010
  • The biproduct bialgebra has been generalized to generalized biproduct bialgebra $B{\times}^L_H\;D$ in [5]. Let (D, B) be an admissible pair and let D be a bialgebra. We show that if generalized biproduct bialgebra $B{\times}^L_H\;D$ is a Hopf algebra with antipode s, then D is a Hopf algebra and the identity $id_B$ has an inverse in the convolution algebra $Hom_k$(B, B). We show that if D is a Hopf algebra with antipode $s_D$ and $s_B$ in $Hom_k$(B, B) is an inverse of $id_B$ then $B{\times}^L_H\;D$ is a Hopf algebra with antipode s described by $s(b{\times}^L_H\;d)={\Sigma}(1_B{\times}^L_H\;s_D(b_{-1}{\cdot}d))(s_B(b_0){\times}^L_H\;1_D)$. We show that the mapping system $B{\leftrightarrows}^{{\Pi}_B}_{j_B}\;B{\times}^L_H\;D{\rightleftarrows}^{{\pi}_D}_{i_D}\;D$ (where $j_B$ and $i_D$ are the canonical inclusions, ${\Pi}_B$ and ${\pi}_D$ are the canonical coalgebra projections) characterizes $B{\times}^L_H\;D$. These generalize the corresponding results in [6].

ON A GENERALIZED TRIF'S MAPPING IN BANACH MODULES OVER A C*-ALGEBRA

  • Park, Chun-Gil;Rassias Themistocles M.
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.323-356
    • /
    • 2006
  • Let X and Y be vector spaces. It is shown that a mapping $f\;:\;X{\rightarrow}Y$ satisfies the functional equation $$mn_{mn-2}C_{k-2}f(\frac {x_1+...+x_{mn}} {mn})$$ $(\ddagger)\;+mn_{mn-2}C_{k-1}\;\sum\limits_{i=1}^n\;f(\frac {x_{mi-m+1}+...+x_{mi}} {m}) =k\;{\sum\limits_{1{\leq}i_1<... if and only if the mapping $f : X{\rightarrow}Y$ is additive, and we prove the Cauchy-Rassias stability of the functional equation $(\ddagger)$ in Banach modules over a unital $C^*-algebra$. Let A and B be unital $C^*-algebra$ or Lie $JC^*-algebra$. As an application, we show that every almost homomorphism h : $A{\rightarrow}B$ of A into B is a homomorphism when $h(2^d{\mu}y) = h(2^d{\mu})h(y)\;or\;h(2^d{\mu}\;o\;y)=h(2^d{\mu})\;o\;h(y)$ for all unitaries ${\mu}{\in}A,\;all\;y{\in}A$, and d = 0,1,2,..., and that every almost linear almost multiplicative mapping $h:\;A{\rightarrow}B$ is a homomorphism when h(2x)=2h(x) for all $x{\in}A$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*-algebras$ or in Lie $JC^*-algebras$, and of Lie $JC^*-algebra$ derivations in Lie $JC^*-algebras$.

ALMOST WEAKLY FINITE CONDUCTOR RINGS AND WEAKLY FINITE CONDUCTOR RINGS

  • Choulli, Hanan;Alaoui, Haitham El;Mouanis, Hakima
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.327-335
    • /
    • 2022
  • Let R be a commutative ring with identity. We call the ring R to be an almost weakly finite conductor if for any two elements a and b in R, there exists a positive integer n such that anR ∩ bnR is finitely generated. In this article, we give some conditions for the trivial ring extensions and the amalgamated algebras to be almost weakly finite conductor rings. We investigate the transfer of these properties to trivial ring extensions and amalgamation of rings. Our results generate examples which enrich the current literature with new families of examples of nonfinite conductor weakly finite conductor rings.

UNITARY INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALGL

  • Jo, Yong-Soo;Kang, Joo-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.207-213
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. An interpolating operator for n-vectors satisfies the equation Ax$_{i}$=y$_{i}$. for i=1,2, …, n. In this article, we investigate unitary interpolation problems in CSL-Algebra AlgL : Let L be a commutative subspace lattice on a Hilbert space H. Let x and y be vectors in H. When does there exist a unitary operator A in AlgL such that Ax=y?

Separating sets and systems of simultaneous equations in the predual of an operator algebra

  • Jung, Il-Bong;Lee, Mi-Young;Lee, Sang-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.311-319
    • /
    • 1995
  • Let $H$ be a separable, infinite dimensional, complex Hilbert space and let $L(H)$ be the algebra of all bounded linear operaors on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $I_H$ and is closed in the $weak^*$ topology on $L(H)$. Note that the ultraweak operator topology coincides with the $weak^*$ topology on $L(H)$ (see [5]).

  • PDF