• Title/Summary/Keyword: BCI(brain computer interface)

Search Result 143, Processing Time 0.03 seconds

A Framework for Processing Brain Waves Used in a Brain-computer Interface

  • Sung, Yun-Sick;Cho, Kyun-Geun;Um, Ky-Hyun
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.315-330
    • /
    • 2012
  • Recently, methodologies for developing brain-computer interface (BCI) games using the BCI have been actively researched. The existing general framework for processing brain waves does not provide the functions required to develop BCI games. Thus, developing BCI games is difficult and requires a large amount of time. Effective BCI game development requires a BCI game framework. Therefore the BCI game framework should provide the functions to generate discrete values, events, and converted waves considering the difference between the brain waves of users and the BCIs of those. In this paper, BCI game frameworks for processing brain waves for BCI games are proposed. A variety of processes for converting brain waves to apply the measured brain waves to the games are also proposed. In an experiment the frameworks proposed were applied to a BCI game for visual perception training. Furthermore, it was verified that the time required for BCI game development was reduced when the framework proposed in the experiment was applied.

A Review of Research Trends on Brain Computer Interface(BCI) Games using Brain Wave (뇌파를 이용한 BCI 게임 동향 고찰)

  • Kim, Gui-Jung;Han, Jung-Soo
    • Journal of Digital Convergence
    • /
    • v.13 no.6
    • /
    • pp.177-184
    • /
    • 2015
  • Brain-computer interface is (BCI) is a communication device that the brain activity is directly input to the computer without input devices, such as a mouse or keyboard. As the brain wave interface hardware technology evolves, expensive and large EEG equipment has been downsized cheaply. So it will be applied to various multimedia applications. Among BCI studies, we suggest the domestic and foreign research trend about how the BCI is applied about the game almost people use. Next, look at the problems of the game with the BCI, we would like to propose the future direction of domestic BMI research and development.

Development of twosome collaboration dance game using Brain-Computer Interface (뇌-컴퓨터 인터페이스를 활용한 2인용 협동댄스게임 구현)

  • Park, Tae-Ryoung;Kim, Jai-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2575-2581
    • /
    • 2011
  • Recently, systematic research on the brain has been conducted and BCI(Brain -Computer Interface) technology applying electroencephalogram has been actively researched. Especially, serious game technology using BCI device has been the subject of interest. This paper develops a "twosome collaboration dance game," which is a serious game that takes advantage of NeuroSky's SDK(System Development Kit) and helps developing the spirit of team work and sociality based on attention and meditation, unlike existing single player games. We expect that this game will help to visualize brain functions of people and to cure ADHD children and the elderly people with MCI(Mild Cognitive Disorder). It is also expected to play a role of social catalyst to the game culture of the adolescent.

A Brain-Computer Interface Based Human-Robot Interaction Platform (Brain-Computer Interface 기반 인간-로봇상호작용 플랫폼)

  • Yoon, Joongsun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7508-7512
    • /
    • 2015
  • We propose a brain-machine interface(BMI) based human-robot interaction(HRI) platform which operates machines by interfacing intentions by capturing brain waves. Platform consists of capture, processing/mapping, and action parts. A noninvasive brain wave sensor, PC, and robot-avatar/LED/motor are selected as capture, processing/mapping, and action part(s), respectively. Various investigations to ensure the relations between intentions and brainwave sensing have been explored. Case studies-an interactive game, on-off controls of LED(s), and motor control(s) are presented to show the design and implementation process of new BMI based HRI platform.

Real-time BCI for imagery movement and Classification for uncued EEG signal (상상 움직임에 대한 실시간 뇌전도 뇌 컴퓨터 상호작용, 큐 없는 상상 움직임에서의 뇌 신호 분류)

  • Kang, Sung-Wook;Jun, Sung-Chan
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.642-645
    • /
    • 2009
  • Brain Computer Interface (BCI) is a communication pathway between devices (computers) and human brain. It treats brain signals in real-time basis and discriminates some information of what human brain is doing. In this work, we develop a EEG BCI system using a feature extraction such as common spatial pattern (CSP) and a classifier using Fisher linear discriminant analysis (FLDA). Two-class EEG motor imagery movement datasets with both cued and uncued are tested to verify its feasibility.

  • PDF

Introduction of brain computer interface to neurologists

  • Kim, Do-Hyung;Yeom, Hong Gi;Kim, Minjung;Kim, Seung Hwan;Yang, Tae-Won;Kwon, Oh-Young;Kim, Young-Soo
    • Annals of Clinical Neurophysiology
    • /
    • v.23 no.2
    • /
    • pp.92-98
    • /
    • 2021
  • A brain-computer interface (BCI) is a technology that acquires and analyzes electrical signals from the brain to control external devices. BCI technologies can generally be used to control a computer cursor, limb orthosis, or word processing. This technology can also be used as a neurological rehabilitation tool for people with poor motor control. We reviewed historical attempts and methods toward predicting arm movements using brain waves. In addition, representative studies of minimally invasive and noninvasive BCI were summarized.

Brain Computer Interfacing: A Multi-Modal Perspective

  • Fazli, Siamac;Lee, Seong-Whan
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.132-138
    • /
    • 2013
  • Multi-modal techniques have received increasing interest in the neuroscientific and brain computer interface (BCI) communities in recent times. Two aspects of multi-modal imaging for BCI will be reviewed. First, the use of recordings of multiple subjects to help find subject-independent BCI classifiers is considered. Then, multi-modal neuroimaging methods involving combined electroencephalogram and near-infrared spectroscopy measurements are discussed, which can help achieve enhanced and robust BCI performance.

A Study on New Gameplay Experience Based on Brain-Computer Interface (BCI를 기반으로 하는 플레이어의 새로운 게임플레이 경험 연구)

  • Ko, Min-Jin;Oh, Gyu-Hwan;Bae, Kyoung-Woo
    • Journal of Korea Game Society
    • /
    • v.9 no.6
    • /
    • pp.31-44
    • /
    • 2009
  • BCI (Brain-Computer Interface) is a way to control computer by using the human brain waves. As the hardware using brain wave technologies has developed, former expensive and big sized brain wave measuring devices have recently become much smaller and cheaper in their prices, making it possible for the individuals to buy them. This predicts them to be applied in various fields of multimedia industry. This thesis is to give an insight into whether the BCI device can be used as a new gaming device approaching it in a game designing point of view. At first, we proposed game play elements that can effectively utilizing the BCI devices, systematize, and produced a game prototype adopting the BCI device based on such game play elements. Next, we verified it with statistical data analysis to show that the prototype adopting the BCI device gives more clear and efficient controls in its game play than a game of only adopting keyboard & mouse devices and analysis verified that BCI-based game play elements provide users with a more intuitive and interesting experience than traditional non-BcI-based game play elements. The results will give a guideline for effective game design methodology for making BCI based games.

  • PDF

Performance Improvements of Brain-Computer Interface Systems based on Variance-Considered Machines (Variance-Considered Machine에 기반한 Brain-Computer Interface 시스템의 성능 향상)

  • Yeom, Hong-Gi;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.153-158
    • /
    • 2010
  • This paper showed the possibilities of performance improvement of Brain-Computer Interface (BCI) decreasing classification error rates of EEG signals by applying Variance-Considered Machine (VCM) which proposed in our previous study. BCI means controlling system such as computer by brain signals. There are many factors which affect performances of BCI. In this paper, we used suggested algorithm as a classification algorithm, the most important factor of the system, and showed the increased correct rates. For the experiments, we used data which are measured during imaginary movements of left hand and foot. The results indicated that superiority of VCM by comparing error rates of the VCM and SVM. We had shown excellence of VCM with theoretical results and simulation results. In this study, superiority of VCM is demonstrated by error rates of real data.

A Study on New Gameplay Based on Brain-Computer Interface (BCI 기반의 새로운 게임 플레이 연구)

  • Ko, Min-Jin;Bae, Kyoung-Woo;Oh, Gyu-Hwan
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.749-755
    • /
    • 2009
  • BCI (Brain-Computer Interface) is a way to control computer by using the human brain waves. As the hardware using brain wave technologies has developed, former expensive and big sized brain wave measuring devices have recently become much smaller and cheaper in their prices, making it possible for the individuals to buy them. This predicts them to be applied in various fields of multimedia industry. This thesis is to give an insight into whether the BCI device can be used as a new gaming device approaching it in a game designing point of view. At first, we propose game play elements that can effectively utilizing the BCI devices and produce a game prototype adopting the BCI device based on such game play elements. Next, we verify it with statistical data analysis to show that the prototype adopting the BCI device gives more clear and efficient controls in its game play than a game of only adopting keyboard & mouse devices. The results will give a guideline for effective game design methodology for making BCI based games.

  • PDF