• Title/Summary/Keyword: Axial motion

Search Result 426, Processing Time 0.022 seconds

Optimal Control for Synchronizing Positions of Multi-Axis Driving System with Cross-Coupled Structure (다축 구동 시스템의 교차식 구조를 이용한 최적 위치동기 제어)

  • 주백석;김성수;홍대희;박진무;조태연
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.271-274
    • /
    • 2001
  • The present paper deals with the development of digital contouring controller for multiaxial servosystem. Instead of coordinating the commands to the individual feed drives and implementing closed position loop control for each axis, this work is achieved by the evaluation of a optimal cross-couple compensator aimed specifically at improving contouring accuracy in multi-axial feed drives. The optimal control formulation explicitly includes the contour error in the performance index to be minimized. The contouring control is simulated for straight line. The results show that the proposed controller reduces contouring errors considerably, as compared to the conventional uncoupled control for biaxial systems.

  • PDF

3-D Form Generation Mechanism in the Centerless Grinding Process (II) -Thrufeed Grinding- (무심 연삭 공정의 3차원 형상화기구 (II) -관통 연삭-)

  • Kim, Kang;Joo, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.137-144
    • /
    • 1998
  • A mathematical model for investigating the form generation mechanism in the centerless thrufeed grinding process is described. The length of the contact line and the magnitude of the grinding force between the grinding wheel and workpieces vary with the change of the axial location of the current workpiece during grinding. Thus, a new coordinate system and a grinding force curve of previous and/or following workpieces are introduced to treat the axial motion. Experiments and computer simulations were carried out using three types of cylindrical workpiece shapes. To validate this model. simulation results are compared with the experimental results.

  • PDF

Digital Receding Time Horizon LQ Optimal Contour Control System (디지털 후퇴 유한시간 구간 LQ 최적 윤곽제어시스템)

  • Sim, Young-Bok;Lee, Gun-Bok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.105-113
    • /
    • 2006
  • This work is concerned with the development of digital contouring controller for multi-axial servosystems. Digital optimal contouring controller is proposed to coordinate each of the controllers of multiple feed drives and specifically improve the contouring performance. The optimal control formation includes the contour error explicitly in the performance index to be minimized. The contouring control is exercised for straight line and circular contours. Substantial improvement in contouring performance is obtained for a range of contouring conditions. Both steady state and transient error measures have been considered. The simulation study presented has established the potential of the proposed controller to improve contouring performance.

Static and Dynamic Analysis Axial Flux Reluctance Motor Considering nonliearity (비선형을 고려한 축방향 릴럭턴스 전동기의 정.동특성 해석)

  • Kim, Kyung-Ho;Yu, Sun-Ki;Cho, Yun-Hyun;Kang, Do-Hyun;Kim, Jong-Mu;Jeong, Yen-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.12-14
    • /
    • 1999
  • The paper is described about the characteristics analysis of Axial Fluk Reluctance Motor(AFRM) with nonlinear analytical modeling. The parameter of the modeling is computed by the finite element method as functions of input current and angular displacement. To investigate the dynamic characteristics of AFRM, the current, torque, back EMF and output power wave is simulated from the motion equation by MATLAB/Simulink.

  • PDF

An Experimental Study of In-Cylindeer Flow Characteristics of a High Speed Direct Injection Diesel Engine (고속 직접분사식 디젤엔진의 실린더내 유동특성에 관한 실험적 연구)

  • 정경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.22-30
    • /
    • 1996
  • In-cylinder flow of a purpose-built small HSDI Hydra Diesel engine was investigated by laser Doppler velocimetry(LDV) during induction and compression processes. The flow was quantified in terms of ensemble-averaged axial and swirl velocities, normalized by the mean piston speed, at a plane located 12mm from the cylinder head and corresponding to the mid-plane of the diametrically-opposed quartz windows at an enigne speed of 1000rpm. The formation of toroidal vortices during the intake process and the evolution and decay of swirl motion during the compression process were observed. Turbulence at around TDC of compression became homogeneous and isotropic.

  • PDF

A Mathematical Approach for Vibration Analysis of a Pickup Actuator (수학적 전개에 의한 픽업 액추에이터의 진동 분석)

  • Lee, Kyung Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1128-1136
    • /
    • 2012
  • This paper analyzes the vibration characteristics of an optical pickup actuator, which has six wire-suspensions and is used in optical disc drives(ODDs). The vibration characteristics of the actuator is mathematically described by analyzing its beam configuration and motion condition confined to lateral and longitudinal directions of the beams. The accuracy of the vibration characteristics is proved by comparing mode frequencies with a finite element analysis. Finally, it is shown that mode frequencies and shapes can be modified by changing design parameters in mathematical expressions.

Nonlinear Sliding Mode Control of an Axial Electromagnetic Levitation System by Attractive Force (흡인력을 이용한 자기 부상계의 비선형 슬라이딩 모드 제어)

  • 이강원;고유석;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.165-171
    • /
    • 1998
  • An axial electromagnetic levitation system using attractive force is a highly nonlinear system due to the nonlinearity of materials, variable air gap and flux density. To control the levitating system with large air gap, a conventional PID control based on the linear model is not satisfactory to obtain the desired performance and the position tracking control of the sinusoidal motion by simulation results. Thus, sliding mode control(SMC) based on the input-output linearization is suggested and evaluated by simulation and experimental approaches. Usefulness of the SMC to this system is conformed experimentally. If the expected variation of added mass can be included in the gain conditions and the model, the position control performance of the electromagnetic levitation system with large air gap will be improved with robustness.

  • PDF

Velocity Vector Imaging (속도 벡터 영상 방법)

  • Kwon, Sung-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.11-27
    • /
    • 2010
  • Nowadays, ultrasound Doppler imaging is widely used in assessing cardiovascular functions in the human body. However, a major drawback of ultrasonic Doppler methods is that they can provide information on blood flow velocity along the ultrasound beam propagation direction only. Thus, the blood flow velocity is estimated differently depending on the angle between the ultrasound beam and the flow direction. In order to overcome this limitation, there have been many researches devoted to estimating both axial and lateral velocities. The purpose of this article is to survey various two-dimensional velocity estimation methods in the context of Doppler imaging. Some velocity vector estimation methods can also be applied to determine tissue motion as required in elastography. The discussion is mainly concerned with the case of estimating a two-dimensional in-plane velocity vector involving the axial and lateral directions.

Personalized Prediction Algorithm of Physical Activity Energy Expenditure through Comparison of Physical Activity (신체활동 비교를 통한 개인 맞춤형 신체활동 에너지 소비량 예측 알고리즘)

  • Kim, Do-Yoon;Jeon, So-Hye;Pai, Yoon-Hyung;Kim, Nam-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.87-93
    • /
    • 2012
  • The purpose of this study suggests a personalized algorithm of physical activity energy expenditure prediction through comparison and analysis of individual physical activity. The research for a 3-axial accelerometer sensor has increased the role of physical activity in promoting health and preventing chronic disease has long been established. Estimating algorithm of physical activity energy expenditure was implemented by using a tri-axial accelerometer motion detector of the SVM(Signal Vector Magnitude) of 3-axis(x, y, z). A total of 10 participants(5 males and 5 females aged between 20 and 30 years). The activities protocol consisted of three types on treadmill; participants performed three treadmill activity at three speeds(3, 5, 8 km/h). These activities were repeated four weeks.

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.