Velocity Vector Imaging

속도 벡터 영상 방법

  • Kwon, Sung-Jae (Department of Communications Engineering, Daejin University)
  • Received : 2010.02.08
  • Accepted : 2010.03.09
  • Published : 2010.03.31

Abstract

Nowadays, ultrasound Doppler imaging is widely used in assessing cardiovascular functions in the human body. However, a major drawback of ultrasonic Doppler methods is that they can provide information on blood flow velocity along the ultrasound beam propagation direction only. Thus, the blood flow velocity is estimated differently depending on the angle between the ultrasound beam and the flow direction. In order to overcome this limitation, there have been many researches devoted to estimating both axial and lateral velocities. The purpose of this article is to survey various two-dimensional velocity estimation methods in the context of Doppler imaging. Some velocity vector estimation methods can also be applied to determine tissue motion as required in elastography. The discussion is mainly concerned with the case of estimating a two-dimensional in-plane velocity vector involving the axial and lateral directions.

Keywords

References

  1. A. P. G. Hoeks, H. H. P. M. Peeters, C. J. Ruissen, and R. S. Reneman, "A novel frequency estimator for sampled Doppler signals," IEEE Trans, Biomed. Eng., vol. BME-31, no. 2, pp. 212-220. Feb. 1984. https://doi.org/10.1109/TBME.1984.325331
  2. M. A. Brandestini and F. K. Forster, "Blood flow imaging using a discrete-time frequency meter," in Proc, IEEE Ultrason. Symp., 1978, pp. 348-352.
  3. W. D. Barber, J. W. Eberhard, and S. G. Karr, "A new time domain technique for velocity measurements using Doppler ultrasound." IEEE Trans. Biomed, Eng., vol. BME-32, no. 3, pp. 213-229, Mar. 1985. https://doi.org/10.1109/TBME.1985.325531
  4. B. A. J. Angelsen, "Instantaneous frequency, mean frequency, and variance of mean frequency estimators for ultrasonic blood velocity Doppler signals," IEEE Trans. Biomed, Eng.. vol. BME-28, no. 11, pp. 733-741, Nov. 1981. https://doi.org/10.1109/TBME.1981.324853
  5. G. H. van Leeuwen, A. P. G. Hoeks, and R. S. Reneman, "Simulation of real-time frequency estimators for pulsed Doppler systems." Ultrason. Imag., vol. 8, no. 4. pp. 252-271, Oct. 1986. https://doi.org/10.1016/0161-7346(86)90014-3
  6. A. Nowicki, J. Reid, P. C. Pedersen, A. W. Schmidt, and H. Dung, "On the behavior of instantaneous frequency estimators implemented on Doppler flow imagers." Ultrasound Med, Biol., vol. 16, no. 5, pp, 511-518, 1990. https://doi.org/10.1016/0301-5629(90)90173-A
  7. P. J. Brands and A. P. Hoeks. "A comparison method for mean frequency estimators for Doppler ultrasound." Ultrason. Imag.. vol. 14, no, 4, pp. 367-386, Oct. 1992. https://doi.org/10.1016/0161-7346(92)90078-A
  8. T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out, Elsevier Academic Press. Burlington. MA, 2004.
  9. P. N. T. Wells, Advances in Ultrasound Techniques and Instrumentation, Churchill Livingstone, New York, NY, 1993.
  10. J. A. Jensen, Estimation of Blood Velocities Using Ultrasound: A Signal Processing Approach. Cambridge University Press, New York, NY, 1996.
  11. C. Kasai, N. Namekawa. A. Koyano, and R. Omoto, "Real-time two-dimensional blood flow imaging using an autocorrelation technique." IEEE Trans. Sonics Ultrason, vol. SU-32, no. 3. pp. 485-464, May 1985.
  12. M. R. Sturgill, R. H. Love, and B. K. Herres, "An improved blood velocity estimator optimized for real-time ultrasound flow applications." in Proc. IEEE Ultrason. Symp., 1990, pp. 1467-1471.
  13. Y. B. Ahn and S. B. Park, "Estimation of mean frequency and variance of ultrasonic doppler signal by using second-order autoregressive model," IEEE Trans. Ultrason. Ferroelec. Freq, Control., vol. 38, no. 3. pp. 172-182, May 1991. https://doi.org/10.1109/58.79600
  14. P. Wang, Y. Shen, and X. Wang, "An improved mean frequency estimator for ultrasonic color flow imaging using second-order autoregressive model," in Proc. IEEE EMBS conf., 2005. pp. 5643-5646.
  15. L. S. Wilson. "Description of broad-band pulsed Doppler ultrasound processing using the two-dimensional Fourier transform." Ultrason. Imag,, vol. 13, no. 4, pp. 301-315, Oct. 1991. https://doi.org/10.1016/0161-7346(91)90139-9
  16. T. Loupas and R. W. Gill, "Multifrequency Doppler: Improving the quality of spectral estimation by making full use of the information present in the backscattered RF echoes." IEEE Trans. Ultrason, Ferroelec. Freq, Control, vol. 41, no. 4, pp. 522-531, July 1994. https://doi.org/10.1109/58.294114
  17. T. Loupas, J. T. Powers, and R. W. Gill, "An axial velocity estimator for ultrasound blood flow imaging, based on a full evaluation of the Doppler equation by means of a two-dimensional autocorrelation approach." IEEE Trans. Ultrason. Ferroelec, Freq, Control, vol. 42, no. 4, pp. 672-688, July 1995, https://doi.org/10.1109/58.393110
  18. T. Loupas, R. B. Peterson, and R. W. Gill, "Experimental evaluation of velocity and power estimation for ultrasound blood flow imaging, by means of a two-dimensional autocorrelation approach," IEEE Trans. Ultrason, Ferroelec. Freq, Control, vol. 42, no. 4, pp. 689-699, July 1995. https://doi.org/10.1109/58.393111
  19. P. Munk and J. A. Jensen, "A new approach for the estimation of the axial velocity using ultrasound," Ultrasonics. vol. 37, no. 10. pp. 661-665, July 2000. https://doi.org/10.1016/S0041-624X(00)00011-1
  20. M. F. Allam and J. F. Greenleaf, "Isomorphism between pulsedwave Doppler ultrasound and direction-of-arrival estimation Part I: Basic principle," IEEE Trans, Ultrason, Ferroelec, Freq. Control, vol. 43, no. 5, pp. 911-922, Sept. 1996. https://doi.org/10.1109/58.535495
  21. M. F, Allam, R. R. Kinnick, and J. F. Greenleaf. "Isomorphism between pulsed-wave Doppler ultrasound and direction-of arrival estimation-Part II: Experimental results," IEEE Trans. Ultrason. Ferroelec, Freq, Control, vol. 43, no. 5, pp. 923-935, Sept. 1996. https://doi.org/10.1109/58.535496
  22. H. Torp, K. Kristofferson, and B. A. J. Angelsen, "Autocorrelation techniques in color flow imaging: Signal model and statistical properties of the autocorrelation estimates." IEEE Trans. Ultrason. Ferroelectr, Freq; Control, vol. 41, no, 5, pp. 604-612, Sept. 1994. https://doi.org/10.1109/58.308495
  23. X. Lai, H. Torp, and K. Kristofferson, "An extended autocorrelation method for estimation of blood velocity." IEEE Trans. Ultrason. Ferroeiear, Freq, Control, vol. 44, no. 6, pp. 1332-1342, Nov. 1997. https://doi.org/10.1109/58.656636
  24. S. I. Rabben, S. Bjaerum, V. Sorhus, and H. Torp, "Ultrasound based vessel wall tracking: An auto-correlation technique with RF center frequency estimation." Ultrasound Med, Biol., vol. 28, no. 4, pp. 507-517. Apr. 2002. https://doi.org/10.1016/S0301-5629(02)00487-8
  25. K.W. Ferrara and V. R. Algazi, "Improved color flow mapping with the wideband maximum likelihood estimator," in Proc, IEEE Ultrason. Symp, 1990, pp, 1517-1521.
  26. K. W. Ferrara and V. R. Algazi, "A new wideband spread target maximum likelihood estimator for blood velocity estimation-Part I: Theory," IEEE Trans. Ultrason. Ferroelectr, Freq, Control, vol. 38, no. 1, pp. 1-16, Jan. 1991. https://doi.org/10.1109/58.67829
  27. K. W. Ferrara and V. R. Algazi, 'A new wideband spread target maximum likelihood estimator for blood velocity estimation-Part II: Evaluation of estimators with experimental data." IEEE Trans. Ultrason. Ferroelectr, Freq. Control, vol. 38, no. 1, pp. 17-26, Jan. 1991. https://doi.org/10.1109/58.67830
  28. M. Schlaikjer and J. A. Jensen. "Maximum likelihood blood velocity estimator incorporating properties of flow physics," IEEE Trans. Ultrason, Ferroelectr. Free. Control, vol. 51, no. 1, pp. 80-92, Jan. 2004. https://doi.org/10.1109/TUFFC.2004.1268470
  29. I. A. Hein and W. D. O'Brien, "Current time-domain methods for assessing tissue motion by analysis from reflected ultrasound echoes-A review," IEEE Trans. Ultrason, Ferroelec. Freq, Control., vol. 40, no, 2, pp. 84-102, Mar. 1993. https://doi.org/10.1109/58.212556
  30. M. A. Shartati, J. H. Dripps, and W. N. McDicken, "A cornparison of colour flow imaging algorithms: Phys. Med, Biol., vol. 38, no. 11, pp. 1589-1600, Nov. 1993. https://doi.org/10.1088/0031-9155/38/11/004
  31. G. F. Pinton, J. J. Dahl, and G. E. Trahey, "Rapid tracking of small displacements with ultrasound," IEEE Trans. Ultrason. Ferroelec. Freq, Control, vol. 53, no. 6, pp. 1103-1117, June 2006. https://doi.org/10.1109/TUFFC.2006.1642509
  32. L. Thomas and A. Hall, "An improved wall filter for flow imaging of low velocity flows." in Proc, IEEE Ultrason, Symp, 1994, pp. 1701-1704.
  33. Y. Zheng, A. Yao, R. R. Kinnick, and J. F. Greenleaf, "Effective and flexible wall filter for pulsed Doppler signals," in Proc. IEEE Ultrason. Symp, 1999, pp. 1455-1458.
  34. A. P. Kadi and T. Loupas, "On the performance of regression and step-initialized IIR clutter filters for color Doppler systems in diagnostic medical ultrasound," IEEE Trans. Ultrason. Ferroelectr. Freq, Control, vol. 42, no. 5, pp. 927-937, Sept. 1995. https://doi.org/10.1109/58.464825
  35. J. A. Jensen, "Stationary echo canceling in velocity estimation by time-domain cross-correlation," IEEE Trans. Med, Imag., vol. 12, no. 3, pp. 471-477, Sept. 1993. https://doi.org/10.1109/42.241874
  36. K. E. Fahrbach, 'Ein beitrag zur blutgeschwindigkeitsmessung unter anwendung des Dopplereffektes," Electromedizin, vol. 15, pp, 26-31, 1970.
  37. K. E. Fahrbach, "Apparatus for measuring the speed of flowing media: U.S. Patent 3766 517, Oct. 16, 1973.
  38. A. H, Steinman, E. Y. L. Lui, K, W. Johnston, and R. S. C. Cobbold, "Beam steering in pulsed Doppler ultrasound velocity information." in Proc. IEEE Ultrason. Symp., 2004, pp. 1745-1748.
  39. R. E. Daigle, "Aortic sensing using an ultrasonic esophageal probe: Ph.D. dissertation, Colorado State University, 1974.
  40. R. E. Daigle, C. W. Miller, M. B. Histand, F. D. McLeod, and D. E. Hokanson, "Nontraumatic aortic blood flow sensing by use of an ultrasonic esophageal probe." Journal of Applied Physiology, vol. 38, no, 6, pp. 1153-1160, 1975. https://doi.org/10.1152/jappl.1975.38.6.1153
  41. M. D. Fox, "Multiple crossed-beam ultrasound Doppler velocimetry," IEEE Trans. Sonics Ultrason., vol. 25, no, 5, pp. 281-286, Sept, 1978. https://doi.org/10.1109/T-SU.1978.31028
  42. M. D. Fox and W. M. Gardiner, "Three-dimensional Doppler velocimetry of flow jets." IEEE Trans. Biomed, Eng.. vol. 35, no. 10, pp, 834-841, Oct. 1988. https://doi.org/10.1109/10.7290
  43. W. Wang and L. Yao, "A double beam Doppler ultrasound method for quantitative blood flow velocity measurement," Ultrasound Med. Biol., vol. 8, no, 4, pp. 421-425, 1982. https://doi.org/10.1016/S0301-5629(82)80010-0
  44. T. Tamura, R. S. C. Cobbold, and K. W. Johnston, "Determination of 2-D velocity vectors using color Doppler ultrasound: in Proc, IEEE Ultrason. Symp.. 1990, pp. 1537-1540.
  45. H. Furuhata, R. Kanno, K. Kodaira, K. Fujishiro, J. Hayashi, H. Matsumoto, and S. Yoshimura, "An ultrasonic quantitative blood flow measuring system to measure the absolute votume flow rate." in Proc, 12th Int. Conf, Med, Biol. Eng., 1979, pp. 9-11.
  46. D.-Y. Fei, C.-T. Fu, and D. Liu, "Computer implementation in the reconstruction of 2-D flow velocity fields in ultrasound Doppler color imaging: Comput. Biol. Med., vol. 25, no. 6. pp. 495-503, Nov. 1995. https://doi.org/10.1016/0010-4825(95)00039-4
  47. D.-Y. Fei and C.-T. Fu, "New method to obtain ultrasonic angle independent Doppler color images using a sector transducer." Annals Biomed. Eng., vol. 27, pp. 187-193, Mar. 1999. https://doi.org/10.1114/1.172
  48. D.-Y. Fei, C.-T. Fu, W. H. Brewer, and K. A. Kraft, 'The accuracy of angle independent Doppler color imaging in velocity and volumetric flow measurements." in Proc. IEEE EMBS Conf., 1993, pp. 214-215.
  49. D. Fei, C. Fu, W. H. Brewer, and K. Kraft, "Angle independent Doppler color imaging: Determination of accuracy and a method of display: Ultrasound Med. Biol., vol. 20, no. 2, pp, 147-155, 1994. https://doi.org/10.1016/0301-5629(94)90079-5
  50. T. A. Maniatis. R. S. C. Cobbold, and K. W. Johnston, "Two dimensional velocity reconstruction strategies for color flow Doppler ultrasound images." Ultrasound Med. Biol., vol. 20, no. 2, pp. 137-145, 1994. https://doi.org/10.1016/0301-5629(94)90078-7
  51. D. Vilkomerson, D. Lyons, and T. Chilipka, "Diffractive transducers for angle-independent velocity measurements," in Proc, IEEE Ultrason, Symp.. 1994, pp. 1677-1682.
  52. D. Vilkomerson, D. Lyons, T. Chilipka. P. Lopath, and K. K. Shung, "Diffraction-grating transducers." in Proc. IEEE Ultrason. Symp, 1997, pp, 1691-1696.
  53. D. Vilkomerson, D, Lyons, T. Chilipka, M. Delamere, P. Lopath, P. Palanchon, and K. K. Shung, "Clinical blood flow measurements using diffraction-grating transducers," in Proc. IEEE Ultrason. Symp., 1998, pp, 1501-1508.
  54. D. Vilkomerson, T. Chilipka, P. Domagala, and J. Bogan, "Low cost Doppler system utilizing diffraction-grating transducers." in Proc. IEEE Ultrason, Symp., 2000, pp. 1491-1496,
  55. J. R. Overbeck, K. W. Beach, and D. E. Strandness. "Vector Doppler: Accurate measurement of blood velocity in two dimensions." Ultrasound Med, Biol., vol. 18, pp. 19-31, 1992. https://doi.org/10.1016/0301-5629(92)90004-T
  56. P. J. Phillips, A. P. Kadi, and O. T. von Ramm, "Feasibility study for a two-dimensional diagnostic ultrasound velocity mapping system," Ultrasound Mea. Biol., vol. 21, no. 2, pp. 217-229, 1995. https://doi.org/10.1016/S0301-5629(94)00113-8
  57. P. J. Phillips, "Real time two-dimensional vector velocity color mapping system using subaperture pulse chasing." Ph.D. dissertation, Dept. Biomed. Eng., Duke University, 1996.
  58. P. J. Phillips, S. W. Straka, and O. T. von Ramm, "Real time two-dimensional vector velocity color mapping ultrasound systems using subaperture pulse chasing." in Proc. 21st International Symp. Ultrason, Imag. Tissue Characterization, pp. 60, 1996.
  59. B. Dunmire, K. W. Beach, K-H. Labs, M. Plett, and D. E. Strandness Jr., "Cross-beam vector Doppler ultrasound for angle-independent velocity measurements." Ultrasound Med, Biol., vol. 26, no. 8, pp. 1213-1235, 2000. https://doi.org/10.1016/S0301-5629(00)00287-8
  60. P. Tortoli, G. Bambi, and S. Ricci, "Accurate Doppler angle estimation for vector flow measurements." IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol. 53, no. 8, pp. 1425-1431, Aug. 2006. https://doi.org/10.1109/TUFFC.2006.1665099
  61. A. Pastorelli, G. Torricelli, M, Scabia, E. Biagi, and L. Masotti, "A real-lime two-dimensional vector Doppler system for clinical experimentation," IEEE Trans. Med. Imag., vol. 27. no. 10, pp. 1515-1524, Oct. 2008. https://doi.org/10.1109/TMI.2008.927337
  62. M. Scabia, E. Biagi, and L. Masotti, "Hardware and software platform for real-time processing and visualization of echographic radiofrequency signals," IEEE Trans. Ultrason. Ferroefectr, Freq. Control, vol. 49, no. 10, pp. 1444-1452, Oct. 2002. https://doi.org/10.1109/TUFFC.2002.1041086
  63. J.-y. Lu, Z. Wang, and S.-J. Kwon, "Blood flow velocity vector imaging with high frame rate imaging methods," in Proc, IEEE Ultrason. Symp.. 2006, pp. 963-966.
  64. V. L. Newhouse, D. Censor, T. Yontz, and B. B. Goldberg, "Ultrasound Doppler probing of flows transverse with respect to beam axis," IEEE Trans. Biomed. Eng., vol. BME-34. no. 10, pp. 779-789, Oct. 1987. https://doi.org/10.1109/TBME.1987.325920
  65. V. L. Newhouse, K. S. Dickerson, D. Cathignol, and J.-Y. Chapelon, "Three-dimensional vector flow estimation using two transducers and spectral Width," IEEE Trans. Ultrason. Fetroetectr. Freq. Control, vol. 41, no. 1, pp. 90-95, Jan. 1994. https://doi.org/10.1109/58.265826
  66. P. Tortoli, G. Guidi, F. Guidi, and C. Atzeni, "A review of experimental transverse Doppler studies," IEEE Trans. Ultrason. Ferroetectr, Freq, Control, vol. 41, no. 1, pp. 84-89, Jan. 1994. https://doi.org/10.1109/58.265825
  67. H. K. Chiang, B.-R, Lee, C.-D. Kuo, Y.-H. Chou, and S.-K, Lee, "An automatic Doppler angle and flow velocity measurement method," in Proc. IEEE Ultrason. Symp.. 1998. pp. 1579-1582.
  68. B.-R, Lee, H. K. Chiang, B.-R, Lee, C.-D. Kuo, W.-L. Lin, and S.-K. Lee, "Doppler angle and flow velocity estimations using the classic and transverse Doppler effects," IEEE Trans. Ultrason. Ferroelectr, Freq. Control, vol. 46, no. 1, pp. 252-256, Jan. 1999. https://doi.org/10.1109/58.741545
  69. P.-C. Li, C.-J. Cheng, and C.-C. Shen, "Doppler angle estimation using correlation," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 47, no. 1, pp. 188-196, Jan. 2000. https://doi.org/10.1109/58.818761
  70. J.-y. Lu, "Improving accuracy of transverse velocity measurement with a new limited diffraction beam," in Proc, IEEE Ultrason Symp, 1996, pp. 1255-1260.
  71. M. Nakajima, T. Itoh, M. Shinqyouuchi, I. Akiyama, and S. Yuta, "Ultrasonic speckle velocirnetry,' in Proc. IEEE Ultrason. Symp, 1988, pp. 1007-1012.
  72. G. E. Trahey, J. W. Allison, and O. T. von Ramm, "Angle independent ultrasonic detection of blood flow," IEEE Trans. Biomed. Eng., vol. BME-34, no. 12. pp. 965-967, 1987. https://doi.org/10.1109/TBME.1987.325938
  73. L. N. Bohs and G. E. Trahey, "A novel method for angle independent ultrasonic imaging of blood flow and tissue motion," IEEE Trans. Blamed, Eng., vol. 38, no. 3, pp. 280-286, Mar. 1991. https://doi.org/10.1109/10.133210
  74. L, N. Bohs, B. H. Friemel, B. A. McDermott, and G. E. Trahey, "A real time system for quantifying and displaying two-dimensional velocities using ultrasound," Ultrasound Med, Biol, vol. 19, no. 9, pp. 751-761, 1993. https://doi.org/10.1016/0301-5629(93)90092-3
  75. B. Geiman, L. Bohs, S. Czenszak, M. Anderson, and G. Trahey, "Initial experimental results using ensemble tracking for 2D vector velocity measurement," in Proc. IEEE Ultrason. Symp., 1996, pp. 1241-1244.
  76. L. N. Bohs, B. J. Geiman, M. E. Anderson, S. M. Breit, and G. E. Trahey, "Ensemble tracking for 2-D vector velocity measurement: Experimental and initial clinical results," IEEE Trans. Ultrason. Ferroefectr. Freq. Control, vol. 45, no. 4, pp. 912-924, July 1998. https://doi.org/10.1109/58.710557
  77. L.-M. Wang and K. K. Shung, "Adaptive pattern correlation for two-dimensional blood flow measurements," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 43, no. 5, pp. 881-887, Sept. 1996. https://doi.org/10.1109/58.535490
  78. J. Udesen, F. Gran, K. L. Hansen, J. A. Jensen, C. Thomsen, and M. B. Nielsen, "High frame-rate blood vector velocity imaging using plane waves: simulations and preliminary experiments," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 8, pp. 1729-1743, Aug. 2008. https://doi.org/10.1109/TUFFC.2008.858
  79. J.-y. Lu, S. He, and K. F. Dajani, "Ultrasound storage correlator arrays for real-time blood flow velocity vector imaging," Acoust. Imag., vol. 25, pp. 427-436, 2000.
  80. M. E. Anderson, "Spatial quadrature: A novel technique for multi-dimensional velocity estimation," in Proc. IEEE Ultrason. Symp., 1997, pp. 1233-1238.
  81. M. E. Anderson, "Multi-dimensional velocity estimation with ultrasound using spatial quadrature," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, pp. 852-861, May 1998.
  82. M. E. Anderson, "Real-time implementation of lateral flow estimation using spatial quadrature,' in Proc. IEEE Ultrason. Symp., 1998, pp. 1483-1487.
  83. M. E, Anderson, L. N. Bohs, and S. C. Gebhart, "A comparison of flow tracking techniques: Spatial quadrature with phase-sensitive axial demodulation versus speckle tracking,' in Proc. IEEE Ultrason. Symp., 1999, pp. 1471-1475.
  84. M. E. Anderson, "A heterodyning demodulation technique for spatial quadrature," in Proc. IEEE Ultrason. Symp., 2000, pp. 1487-1490.
  85. J. A. Jensen and P. Munk, "A new method for estimation of velocity vectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, no. 3, pp. 837-851, May 1998. https://doi.org/10.1109/58.677749
  86. P. Munk, "Estimation of the 2-D flow vector in ultrasonic imaging: A new approach," M.S, thesis, Dept. Inform. Technol., Technical University of Denmark, 1996,
  87. P. Munk and J. A. Jensen, "Performance of a vector velocity estimator," in Proc. IEEE Ultrason. Symp.. 1998, pp. 1489-1493.
  88. J. A. Jensen and I. R. Lacasa, "Estimation of blood velocity vectors using transverse ultrasound beam focusing and cross correlation," in Proc. IEEE Ultrason. Symp., 1999, pp. 1493-1497.
  89. J. A. Jensen, "A new estimator for velocity vector estimation," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 48, no. 4, pp. 886-894, July 2001. https://doi.org/10.1109/58.935705
  90. W. F. Walker, "A new class of aperture domain flow estimation algorithms," in Proc. IEEE Ultrason. Symp., 1997, pp. 1227-1231.
  91. S.-L. Wang, M.-L, Li, and P.-C. Li, "Estimating the blood velocity vector using aperture domain data," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, no. 1, pp. 70-78, Jan. 2007. https://doi.org/10.1109/TUFFC.2007.212
  92. J. A. Jensen and S. I. Nikolov, "Transverse flow imaging using synthetic aperture directional beamforming," in Proc. IEEE Ultrason. Symp., 2002, pp. 1488-1492.
  93. J. A. Jensen, "Directional velocity estimation using focusing along the flow direction I: Theory and simulation," IEEE Trans. Ultrason. Ferroetectr. Freq. Control, vol. 50, no. 7, pp. 857-872, July 2003.
  94. J. A. Jensen and R. Bjerngaard, "Directional velocity estimation using focusing along the flow direction II: Experimental investigation," IEEE Trans. Ultrason. Ferroelectr, Frea. Control, vol. 50, no. 7, pp. 857-872, July 2003. https://doi.org/10.1109/TUFFC.2003.1214505
  95. J. A. Jensen and S. I. Nikolov, "Directional synthetic aperture flow imaging," IEEE Trans. Ultrason. Ferroelectr, Freq. Control, vol. 51, no. 9, pp. 1107-1118, Sept. 2004. https://doi.org/10.1109/TUFFC.2004.1334843
  96. J. Kortbek and J. A.Jensen, "Estimation of velocity vector angles using the directional cross-correlation method,' IEEE Trans. Ultrason. Fetroetectr, Freq. Control, vol. 53, no. 11, pp. 2036-2049, Nov. 2006. https://doi.org/10.1109/TUFFC.2006.144
  97. J. A. Jensen and N. Oddershede, "Estimation of velocity vectors in synthetic aperture ultrasound imaging," IEEE Trans. Med. Imag., vol. 25, no. 12, pp. 1637-1644, Dec. 2006. https://doi.org/10.1109/TMI.2006.883087
  98. K. Katakura and M, Okujima, "Ultrasonic vector velocity measurement by projection computed velocimetry," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 42, no. 5, pp. 889-898, Sept. 1995. https://doi.org/10.1109/58.464829