Browse > Article

Velocity Vector Imaging  

Kwon, Sung-Jae (Department of Communications Engineering, Daejin University)
Abstract
Nowadays, ultrasound Doppler imaging is widely used in assessing cardiovascular functions in the human body. However, a major drawback of ultrasonic Doppler methods is that they can provide information on blood flow velocity along the ultrasound beam propagation direction only. Thus, the blood flow velocity is estimated differently depending on the angle between the ultrasound beam and the flow direction. In order to overcome this limitation, there have been many researches devoted to estimating both axial and lateral velocities. The purpose of this article is to survey various two-dimensional velocity estimation methods in the context of Doppler imaging. Some velocity vector estimation methods can also be applied to determine tissue motion as required in elastography. The discussion is mainly concerned with the case of estimating a two-dimensional in-plane velocity vector involving the axial and lateral directions.
Keywords
Multiple beams; Spatial quadrature; Speckle tracking; Spectral broadening; Velocity vector;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. A. Jensen, "A new estimator for velocity vector estimation," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 48, no. 4, pp. 886-894, July 2001.   DOI   ScienceOn
2 M. F, Allam, R. R. Kinnick, and J. F. Greenleaf. "Isomorphism between pulsed-wave Doppler ultrasound and direction-of arrival estimation-Part II: Experimental results," IEEE Trans. Ultrason. Ferroelec, Freq, Control, vol. 43, no. 5, pp. 923-935, Sept. 1996.   DOI   ScienceOn
3 K. W. Ferrara and V. R. Algazi, 'A new wideband spread target maximum likelihood estimator for blood velocity estimation-Part II: Evaluation of estimators with experimental data." IEEE Trans. Ultrason. Ferroelectr, Freq. Control, vol. 38, no. 1, pp. 17-26, Jan. 1991.   DOI   ScienceOn
4 J. A. Jensen, "Stationary echo canceling in velocity estimation by time-domain cross-correlation," IEEE Trans. Med, Imag., vol. 12, no. 3, pp. 471-477, Sept. 1993.   DOI   ScienceOn
5 M. D. Fox and W. M. Gardiner, "Three-dimensional Doppler velocimetry of flow jets." IEEE Trans. Biomed, Eng.. vol. 35, no. 10, pp, 834-841, Oct. 1988.   DOI   ScienceOn
6 L. N. Bohs, B. J. Geiman, M. E. Anderson, S. M. Breit, and G. E. Trahey, "Ensemble tracking for 2-D vector velocity measurement: Experimental and initial clinical results," IEEE Trans. Ultrason. Ferroefectr. Freq. Control, vol. 45, no. 4, pp. 912-924, July 1998.   DOI   ScienceOn
7 G. E. Trahey, J. W. Allison, and O. T. von Ramm, "Angle independent ultrasonic detection of blood flow," IEEE Trans. Biomed. Eng., vol. BME-34, no. 12. pp. 965-967, 1987.   DOI
8 L. N. Bohs and G. E. Trahey, "A novel method for angle independent ultrasonic imaging of blood flow and tissue motion," IEEE Trans. Blamed, Eng., vol. 38, no. 3, pp. 280-286, Mar. 1991.   DOI   ScienceOn
9 L. S. Wilson. "Description of broad-band pulsed Doppler ultrasound processing using the two-dimensional Fourier transform." Ultrason. Imag,, vol. 13, no. 4, pp. 301-315, Oct. 1991.   DOI   ScienceOn
10 J. A. Jensen, Estimation of Blood Velocities Using Ultrasound: A Signal Processing Approach. Cambridge University Press, New York, NY, 1996.
11 L, N. Bohs, B. H. Friemel, B. A. McDermott, and G. E. Trahey, "A real time system for quantifying and displaying two-dimensional velocities using ultrasound," Ultrasound Med, Biol, vol. 19, no. 9, pp. 751-761, 1993.   DOI   ScienceOn
12 J.-y. Lu, "Improving accuracy of transverse velocity measurement with a new limited diffraction beam," in Proc, IEEE Ultrason Symp, 1996, pp. 1255-1260.
13 T. Tamura, R. S. C. Cobbold, and K. W. Johnston, "Determination of 2-D velocity vectors using color Doppler ultrasound: in Proc, IEEE Ultrason. Symp.. 1990, pp. 1537-1540.
14 C. Kasai, N. Namekawa. A. Koyano, and R. Omoto, "Real-time two-dimensional blood flow imaging using an autocorrelation technique." IEEE Trans. Sonics Ultrason, vol. SU-32, no. 3. pp. 485-464, May 1985.
15 M. R. Sturgill, R. H. Love, and B. K. Herres, "An improved blood velocity estimator optimized for real-time ultrasound flow applications." in Proc. IEEE Ultrason. Symp., 1990, pp. 1467-1471.
16 A. Nowicki, J. Reid, P. C. Pedersen, A. W. Schmidt, and H. Dung, "On the behavior of instantaneous frequency estimators implemented on Doppler flow imagers." Ultrasound Med, Biol., vol. 16, no. 5, pp, 511-518, 1990.   DOI   ScienceOn
17 J. A. Jensen and N. Oddershede, "Estimation of velocity vectors in synthetic aperture ultrasound imaging," IEEE Trans. Med. Imag., vol. 25, no. 12, pp. 1637-1644, Dec. 2006.   DOI
18 M. Nakajima, T. Itoh, M. Shinqyouuchi, I. Akiyama, and S. Yuta, "Ultrasonic speckle velocirnetry,' in Proc. IEEE Ultrason. Symp, 1988, pp. 1007-1012.
19 P.-C. Li, C.-J. Cheng, and C.-C. Shen, "Doppler angle estimation using correlation," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 47, no. 1, pp. 188-196, Jan. 2000.   DOI   ScienceOn
20 W. Wang and L. Yao, "A double beam Doppler ultrasound method for quantitative blood flow velocity measurement," Ultrasound Med. Biol., vol. 8, no, 4, pp. 421-425, 1982.   DOI   ScienceOn
21 J. A. Jensen, "Directional velocity estimation using focusing along the flow direction I: Theory and simulation," IEEE Trans. Ultrason. Ferroetectr. Freq. Control, vol. 50, no. 7, pp. 857-872, July 2003.
22 P. J. Brands and A. P. Hoeks. "A comparison method for mean frequency estimators for Doppler ultrasound." Ultrason. Imag.. vol. 14, no, 4, pp. 367-386, Oct. 1992.   DOI   ScienceOn
23 T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out, Elsevier Academic Press. Burlington. MA, 2004.
24 P. N. T. Wells, Advances in Ultrasound Techniques and Instrumentation, Churchill Livingstone, New York, NY, 1993.
25 K. Katakura and M, Okujima, "Ultrasonic vector velocity measurement by projection computed velocimetry," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 42, no. 5, pp. 889-898, Sept. 1995.   DOI
26 P. Tortoli, G. Guidi, F. Guidi, and C. Atzeni, "A review of experimental transverse Doppler studies," IEEE Trans. Ultrason. Ferroetectr, Freq, Control, vol. 41, no. 1, pp. 84-89, Jan. 1994.   DOI   ScienceOn
27 H. Furuhata, R. Kanno, K. Kodaira, K. Fujishiro, J. Hayashi, H. Matsumoto, and S. Yoshimura, "An ultrasonic quantitative blood flow measuring system to measure the absolute votume flow rate." in Proc, 12th Int. Conf, Med, Biol. Eng., 1979, pp. 9-11.
28 G. H. van Leeuwen, A. P. G. Hoeks, and R. S. Reneman, "Simulation of real-time frequency estimators for pulsed Doppler systems." Ultrason. Imag., vol. 8, no. 4. pp. 252-271, Oct. 1986.   DOI   ScienceOn
29 W. D. Barber, J. W. Eberhard, and S. G. Karr, "A new time domain technique for velocity measurements using Doppler ultrasound." IEEE Trans. Biomed, Eng., vol. BME-32, no. 3, pp. 213-229, Mar. 1985.   DOI
30 J. Kortbek and J. A.Jensen, "Estimation of velocity vector angles using the directional cross-correlation method,' IEEE Trans. Ultrason. Fetroetectr, Freq. Control, vol. 53, no. 11, pp. 2036-2049, Nov. 2006.   DOI
31 M. Scabia, E. Biagi, and L. Masotti, "Hardware and software platform for real-time processing and visualization of echographic radiofrequency signals," IEEE Trans. Ultrason. Ferroefectr, Freq. Control, vol. 49, no. 10, pp. 1444-1452, Oct. 2002.   DOI
32 H. K. Chiang, B.-R, Lee, C.-D. Kuo, Y.-H. Chou, and S.-K, Lee, "An automatic Doppler angle and flow velocity measurement method," in Proc. IEEE Ultrason. Symp.. 1998. pp. 1579-1582.
33 B.-R, Lee, H. K. Chiang, B.-R, Lee, C.-D. Kuo, W.-L. Lin, and S.-K. Lee, "Doppler angle and flow velocity estimations using the classic and transverse Doppler effects," IEEE Trans. Ultrason. Ferroelectr, Freq. Control, vol. 46, no. 1, pp. 252-256, Jan. 1999.   DOI   ScienceOn
34 A. Pastorelli, G. Torricelli, M, Scabia, E. Biagi, and L. Masotti, "A real-lime two-dimensional vector Doppler system for clinical experimentation," IEEE Trans. Med. Imag., vol. 27. no. 10, pp. 1515-1524, Oct. 2008.   DOI
35 R. E. Daigle, C. W. Miller, M. B. Histand, F. D. McLeod, and D. E. Hokanson, "Nontraumatic aortic blood flow sensing by use of an ultrasonic esophageal probe." Journal of Applied Physiology, vol. 38, no, 6, pp. 1153-1160, 1975.   DOI
36 M. D. Fox, "Multiple crossed-beam ultrasound Doppler velocimetry," IEEE Trans. Sonics Ultrason., vol. 25, no, 5, pp. 281-286, Sept, 1978.   DOI
37 B. A. J. Angelsen, "Instantaneous frequency, mean frequency, and variance of mean frequency estimators for ultrasonic blood velocity Doppler signals," IEEE Trans. Biomed, Eng.. vol. BME-28, no. 11, pp. 733-741, Nov. 1981.   DOI
38 J. A. Jensen and R. Bjerngaard, "Directional velocity estimation using focusing along the flow direction II: Experimental investigation," IEEE Trans. Ultrason. Ferroelectr, Frea. Control, vol. 50, no. 7, pp. 857-872, July 2003.   DOI
39 J. A. Jensen and S. I. Nikolov, "Directional synthetic aperture flow imaging," IEEE Trans. Ultrason. Ferroelectr, Freq. Control, vol. 51, no. 9, pp. 1107-1118, Sept. 2004.   DOI
40 S.-L. Wang, M.-L, Li, and P.-C. Li, "Estimating the blood velocity vector using aperture domain data," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, no. 1, pp. 70-78, Jan. 2007.   DOI
41 J.-y. Lu, Z. Wang, and S.-J. Kwon, "Blood flow velocity vector imaging with high frame rate imaging methods," in Proc, IEEE Ultrason. Symp.. 2006, pp. 963-966.
42 V. L. Newhouse, D. Censor, T. Yontz, and B. B. Goldberg, "Ultrasound Doppler probing of flows transverse with respect to beam axis," IEEE Trans. Biomed. Eng., vol. BME-34. no. 10, pp. 779-789, Oct. 1987.   DOI
43 V. L. Newhouse, K. S. Dickerson, D. Cathignol, and J.-Y. Chapelon, "Three-dimensional vector flow estimation using two transducers and spectral Width," IEEE Trans. Ultrason. Fetroetectr. Freq. Control, vol. 41, no. 1, pp. 90-95, Jan. 1994.   DOI   ScienceOn
44 B. Dunmire, K. W. Beach, K-H. Labs, M. Plett, and D. E. Strandness Jr., "Cross-beam vector Doppler ultrasound for angle-independent velocity measurements." Ultrasound Med, Biol., vol. 26, no. 8, pp. 1213-1235, 2000.   DOI   ScienceOn
45 K. E. Fahrbach, "Apparatus for measuring the speed of flowing media: U.S. Patent 3766 517, Oct. 16, 1973.
46 A. H, Steinman, E. Y. L. Lui, K, W. Johnston, and R. S. C. Cobbold, "Beam steering in pulsed Doppler ultrasound velocity information." in Proc. IEEE Ultrason. Symp., 2004, pp. 1745-1748.
47 R. E. Daigle, "Aortic sensing using an ultrasonic esophageal probe: Ph.D. dissertation, Colorado State University, 1974.
48 A. P. G. Hoeks, H. H. P. M. Peeters, C. J. Ruissen, and R. S. Reneman, "A novel frequency estimator for sampled Doppler signals," IEEE Trans, Biomed. Eng., vol. BME-31, no. 2, pp. 212-220. Feb. 1984.   DOI
49 M. A. Brandestini and F. K. Forster, "Blood flow imaging using a discrete-time frequency meter," in Proc, IEEE Ultrason. Symp., 1978, pp. 348-352.
50 J. A. Jensen and S. I. Nikolov, "Transverse flow imaging using synthetic aperture directional beamforming," in Proc. IEEE Ultrason. Symp., 2002, pp. 1488-1492.
51 P. Tortoli, G. Bambi, and S. Ricci, "Accurate Doppler angle estimation for vector flow measurements." IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol. 53, no. 8, pp. 1425-1431, Aug. 2006.   DOI
52 J. A. Jensen and I. R. Lacasa, "Estimation of blood velocity vectors using transverse ultrasound beam focusing and cross correlation," in Proc. IEEE Ultrason. Symp., 1999, pp. 1493-1497.
53 A. P. Kadi and T. Loupas, "On the performance of regression and step-initialized IIR clutter filters for color Doppler systems in diagnostic medical ultrasound," IEEE Trans. Ultrason. Ferroelectr. Freq, Control, vol. 42, no. 5, pp. 927-937, Sept. 1995.   DOI
54 W. F. Walker, "A new class of aperture domain flow estimation algorithms," in Proc. IEEE Ultrason. Symp., 1997, pp. 1227-1231.
55 P. J. Phillips, A. P. Kadi, and O. T. von Ramm, "Feasibility study for a two-dimensional diagnostic ultrasound velocity mapping system," Ultrasound Mea. Biol., vol. 21, no. 2, pp. 217-229, 1995.   DOI   ScienceOn
56 P. J. Phillips, "Real time two-dimensional vector velocity color mapping system using subaperture pulse chasing." Ph.D. dissertation, Dept. Biomed. Eng., Duke University, 1996.
57 P. J. Phillips, S. W. Straka, and O. T. von Ramm, "Real time two-dimensional vector velocity color mapping ultrasound systems using subaperture pulse chasing." in Proc. 21st International Symp. Ultrason, Imag. Tissue Characterization, pp. 60, 1996.
58 K. E. Fahrbach, 'Ein beitrag zur blutgeschwindigkeitsmessung unter anwendung des Dopplereffektes," Electromedizin, vol. 15, pp, 26-31, 1970.
59 Y. Zheng, A. Yao, R. R. Kinnick, and J. F. Greenleaf, "Effective and flexible wall filter for pulsed Doppler signals," in Proc. IEEE Ultrason. Symp, 1999, pp. 1455-1458.
60 P. Munk and J. A. Jensen, "Performance of a vector velocity estimator," in Proc. IEEE Ultrason. Symp.. 1998, pp. 1489-1493.
61 J. R. Overbeck, K. W. Beach, and D. E. Strandness. "Vector Doppler: Accurate measurement of blood velocity in two dimensions." Ultrasound Med, Biol., vol. 18, pp. 19-31, 1992.   DOI   ScienceOn
62 D. Vilkomerson, D. Lyons, T. Chilipka. P. Lopath, and K. K. Shung, "Diffraction-grating transducers." in Proc. IEEE Ultrason. Symp, 1997, pp, 1691-1696.
63 D. Vilkomerson, D, Lyons, T. Chilipka, M. Delamere, P. Lopath, P. Palanchon, and K. K. Shung, "Clinical blood flow measurements using diffraction-grating transducers," in Proc. IEEE Ultrason. Symp., 1998, pp, 1501-1508.
64 D. Vilkomerson, T. Chilipka, P. Domagala, and J. Bogan, "Low cost Doppler system utilizing diffraction-grating transducers." in Proc. IEEE Ultrason, Symp., 2000, pp. 1491-1496,
65 M. Schlaikjer and J. A. Jensen. "Maximum likelihood blood velocity estimator incorporating properties of flow physics," IEEE Trans. Ultrason, Ferroelectr. Free. Control, vol. 51, no. 1, pp. 80-92, Jan. 2004.   DOI
66 M. A. Shartati, J. H. Dripps, and W. N. McDicken, "A cornparison of colour flow imaging algorithms: Phys. Med, Biol., vol. 38, no. 11, pp. 1589-1600, Nov. 1993.   DOI   ScienceOn
67 G. F. Pinton, J. J. Dahl, and G. E. Trahey, "Rapid tracking of small displacements with ultrasound," IEEE Trans. Ultrason. Ferroelec. Freq, Control, vol. 53, no. 6, pp. 1103-1117, June 2006.   DOI
68 J. A. Jensen and P. Munk, "A new method for estimation of velocity vectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, no. 3, pp. 837-851, May 1998.   DOI   ScienceOn
69 P. Munk, "Estimation of the 2-D flow vector in ultrasonic imaging: A new approach," M.S, thesis, Dept. Inform. Technol., Technical University of Denmark, 1996,
70 L. Thomas and A. Hall, "An improved wall filter for flow imaging of low velocity flows." in Proc, IEEE Ultrason, Symp, 1994, pp. 1701-1704.
71 K. W. Ferrara and V. R. Algazi, "A new wideband spread target maximum likelihood estimator for blood velocity estimation-Part I: Theory," IEEE Trans. Ultrason. Ferroelectr, Freq, Control, vol. 38, no. 1, pp. 1-16, Jan. 1991.   DOI   ScienceOn
72 M. E, Anderson, L. N. Bohs, and S. C. Gebhart, "A comparison of flow tracking techniques: Spatial quadrature with phase-sensitive axial demodulation versus speckle tracking,' in Proc. IEEE Ultrason. Symp., 1999, pp. 1471-1475.
73 M. E. Anderson, "A heterodyning demodulation technique for spatial quadrature," in Proc. IEEE Ultrason. Symp., 2000, pp. 1487-1490.
74 D. Fei, C. Fu, W. H. Brewer, and K. Kraft, "Angle independent Doppler color imaging: Determination of accuracy and a method of display: Ultrasound Med. Biol., vol. 20, no. 2, pp, 147-155, 1994.   DOI   ScienceOn
75 I. A. Hein and W. D. O'Brien, "Current time-domain methods for assessing tissue motion by analysis from reflected ultrasound echoes-A review," IEEE Trans. Ultrason, Ferroelec. Freq, Control., vol. 40, no, 2, pp. 84-102, Mar. 1993.   DOI   ScienceOn
76 S. I. Rabben, S. Bjaerum, V. Sorhus, and H. Torp, "Ultrasound based vessel wall tracking: An auto-correlation technique with RF center frequency estimation." Ultrasound Med, Biol., vol. 28, no. 4, pp. 507-517. Apr. 2002.   DOI   ScienceOn
77 K.W. Ferrara and V. R. Algazi, "Improved color flow mapping with the wideband maximum likelihood estimator," in Proc, IEEE Ultrason. Symp, 1990, pp, 1517-1521.
78 M. E. Anderson, "Multi-dimensional velocity estimation with ultrasound using spatial quadrature," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, pp. 852-861, May 1998.
79 M. E. Anderson, "Real-time implementation of lateral flow estimation using spatial quadrature,' in Proc. IEEE Ultrason. Symp., 1998, pp. 1483-1487.
80 D.-Y. Fei and C.-T. Fu, "New method to obtain ultrasonic angle independent Doppler color images using a sector transducer." Annals Biomed. Eng., vol. 27, pp. 187-193, Mar. 1999.   DOI
81 H. Torp, K. Kristofferson, and B. A. J. Angelsen, "Autocorrelation techniques in color flow imaging: Signal model and statistical properties of the autocorrelation estimates." IEEE Trans. Ultrason. Ferroelectr, Freq; Control, vol. 41, no, 5, pp. 604-612, Sept. 1994.   DOI   ScienceOn
82 L.-M. Wang and K. K. Shung, "Adaptive pattern correlation for two-dimensional blood flow measurements," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 43, no. 5, pp. 881-887, Sept. 1996.   DOI   ScienceOn
83 J.-y. Lu, S. He, and K. F. Dajani, "Ultrasound storage correlator arrays for real-time blood flow velocity vector imaging," Acoust. Imag., vol. 25, pp. 427-436, 2000.
84 D.-Y. Fei, C.-T. Fu, W. H. Brewer, and K. A. Kraft, 'The accuracy of angle independent Doppler color imaging in velocity and volumetric flow measurements." in Proc. IEEE EMBS Conf., 1993, pp. 214-215.
85 X. Lai, H. Torp, and K. Kristofferson, "An extended autocorrelation method for estimation of blood velocity." IEEE Trans. Ultrason. Ferroeiear, Freq, Control, vol. 44, no. 6, pp. 1332-1342, Nov. 1997.   DOI   ScienceOn
86 M. E. Anderson, "Spatial quadrature: A novel technique for multi-dimensional velocity estimation," in Proc. IEEE Ultrason. Symp., 1997, pp. 1233-1238.
87 D.-Y. Fei, C.-T. Fu, and D. Liu, "Computer implementation in the reconstruction of 2-D flow velocity fields in ultrasound Doppler color imaging: Comput. Biol. Med., vol. 25, no. 6. pp. 495-503, Nov. 1995.   DOI   ScienceOn
88 P. Munk and J. A. Jensen, "A new approach for the estimation of the axial velocity using ultrasound," Ultrasonics. vol. 37, no. 10. pp. 661-665, July 2000.   DOI   ScienceOn
89 M. F. Allam and J. F. Greenleaf, "Isomorphism between pulsedwave Doppler ultrasound and direction-of-arrival estimation Part I: Basic principle," IEEE Trans, Ultrason, Ferroelec, Freq. Control, vol. 43, no. 5, pp. 911-922, Sept. 1996.   DOI   ScienceOn
90 J. Udesen, F. Gran, K. L. Hansen, J. A. Jensen, C. Thomsen, and M. B. Nielsen, "High frame-rate blood vector velocity imaging using plane waves: simulations and preliminary experiments," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 8, pp. 1729-1743, Aug. 2008.   DOI
91 P. Wang, Y. Shen, and X. Wang, "An improved mean frequency estimator for ultrasonic color flow imaging using second-order autoregressive model," in Proc. IEEE EMBS conf., 2005. pp. 5643-5646.
92 T. A. Maniatis. R. S. C. Cobbold, and K. W. Johnston, "Two dimensional velocity reconstruction strategies for color flow Doppler ultrasound images." Ultrasound Med. Biol., vol. 20, no. 2, pp. 137-145, 1994.   DOI   ScienceOn
93 T. Loupas, R. B. Peterson, and R. W. Gill, "Experimental evaluation of velocity and power estimation for ultrasound blood flow imaging, by means of a two-dimensional autocorrelation approach," IEEE Trans. Ultrason, Ferroelec. Freq, Control, vol. 42, no. 4, pp. 689-699, July 1995.   DOI
94 T. Loupas and R. W. Gill, "Multifrequency Doppler: Improving the quality of spectral estimation by making full use of the information present in the backscattered RF echoes." IEEE Trans. Ultrason, Ferroelec. Freq, Control, vol. 41, no. 4, pp. 522-531, July 1994.   DOI   ScienceOn
95 B. Geiman, L. Bohs, S. Czenszak, M. Anderson, and G. Trahey, "Initial experimental results using ensemble tracking for 2D vector velocity measurement," in Proc. IEEE Ultrason. Symp., 1996, pp. 1241-1244.
96 D. Vilkomerson, D. Lyons, and T. Chilipka, "Diffractive transducers for angle-independent velocity measurements," in Proc, IEEE Ultrason, Symp.. 1994, pp. 1677-1682.
97 T. Loupas, J. T. Powers, and R. W. Gill, "An axial velocity estimator for ultrasound blood flow imaging, based on a full evaluation of the Doppler equation by means of a two-dimensional autocorrelation approach." IEEE Trans. Ultrason. Ferroelec, Freq, Control, vol. 42, no. 4, pp. 672-688, July 1995,   DOI
98 Y. B. Ahn and S. B. Park, "Estimation of mean frequency and variance of ultrasonic doppler signal by using second-order autoregressive model," IEEE Trans. Ultrason. Ferroelec. Freq, Control., vol. 38, no. 3. pp. 172-182, May 1991.   DOI   ScienceOn