• Title/Summary/Keyword: Average River Bed

Search Result 41, Processing Time 0.032 seconds

Influenced on Analysis of Characteristics of Forest Environmental Factors on Debris Flow Occurrence (토석류 위험지역에 영향하는 산림환경 특성 분석)

  • Park, Jae-hyeon;Kang, Min-Jeong;Kim, Ki-Dae
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.3
    • /
    • pp.403-410
    • /
    • 2015
  • This study was conducted to analyze the forest environmental characteristics on a total of 20 forest environmental factors affecting the debris flow against 272 sites of risk areas. In the case of environmental factors, it showed the high risk of debris flow under the following conditions such as soil depth of less than 30cm, west slope, altitude of 200~300 m, mountain average slope of $25{\sim}30^{\circ}$, sandy loam, igneous rocks, and composite slope. Among the rainfall factors, 50~100 mm of maximum hourly rain fall and 300 mm of maximum rain fall per day have been shown the high risk of debris flow. Furthermore, the high risk of debris flow was related to the river-bed average slope of $10{\sim}20^{\circ}$, the river-bed average width of >10 m, the small amount of debris in river-bed (less than 20% of river-bed structure), the drainage density of >$1km/km^2$, the 40~60% of area with more than $20^{\circ}$ slope, and the 40~60% of areas with risk grade 2 of landslide. In addition, forest environmental factors including the driftwood, soil erosion control structures, age-class 3, crown density (density), and mixed forest were important factors causing the high risk of debris flow.

The Geomorphic Characteristics of the Location of the 4 Traditional Settlements in Youngnam District (영남지방 4대 전통취락의 지형적 입지 특성)

  • Choe, Hee-Man
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.4
    • /
    • pp.413-424
    • /
    • 2003
  • This study aims to interpret the location of 4 traditional settlements in the Youngnam district of Korea in view of geomorphology. For this study, GIS techniques were used to analyse quantitatively the degree of slope, slope aspect and the relation with river/stream of these regions. Yugok is located on pediment in the valley basin. Cheonjeon is located in the end part of the hill. Hahoe is located on the convex natural levee of the flood plain. Yangdong is located on a hillside. Houses are mostly distributed with south, southeast, and southwest aspect, but in Hahoe face all sides. Also, the settlements are located on average $10{\sim}20m$ above river bed. This indicates a safe height above river bed for avoiding an flood damage. These results imply that the location of the traditional settlement is based on a scientific logic and rationale. It is thus argued that the settlements satisfy exellent geomorphic conditions from the perspective of modern theories of residential location.

  • PDF

Variation of Water Quality and Periphytic Algae in Multi-layer and Porous Structure for River-bed Protection using Bio-polymer materials: A Case Study of Daecheong-stream in Gimhae-Si (Bio-polymer 소재를 활용한 다층다공성 하상보호공 적용에 따른 수질 및 부착조류의 변화량: 김해시 대청천을 중심으로)

  • Lee, Sang-Hoon;Ahn, Hong-Kyu;Che, Soo-Kwon
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.227-235
    • /
    • 2019
  • This study monitored Daecheong 1-bo, Daecheong-stream, which carried out the project in 2014, from 2015 to 2016. The technology applied to the stream was evaluated using Periphytic Algae to check contamination indicators and ecological health of the area with an integral river-bed protection using non-toxic materials. The water quality of the monitoring section was confirmed to be above the river environment standard (II), and it was confirmed that the Saproxenic taxa of the river bed protection were higher than the upper and downstream sections. The TDI, which is an index of attachment algae, was shown in the average 51.03 and 52.15 for the pilot project sections in 2015 and 2016, confirming that the index is of the "normal" grade. This is the other sections in the upstream and downstream sections showed higher than "bad", which is thought to have a positive effect on the habitat of the river ecosystem components, especially the microbial population in river bed protection.

How effective has the Wairau River erodible embankment been in removing sediment from the Lower Wairau River?

  • Kyle, Christensen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.237-237
    • /
    • 2015
  • The district of Marlborough has had more than its share of river management projects over the past 150 years, each one uniquely affecting the geomorphology and flood hazard of the Wairau Plains. A major early project was to block the Opawa distributary channel at Conders Bend. The Opawa distributary channel took a third and more of Wairau River floodwaters and was a major increasing threat to Blenheim. The blocking of the Opawa required the Wairau and Lower Wairau rivers to carry greater flood flows more often. Consequently the Lower Wairau River was breaking out of its stopbanks approximately every seven years. The idea of diverting flood waters at Tuamarina by providing a direct diversion to the sea through the beach ridges was conceptualised back around the 1920s however, limits on resources and machinery meant the mission of excavating this diversion didn't become feasible until the 1960s. In 1964 a 10 m wide pilot channel was cut from the sea to Tuamarina with an initial capacity of $700m^3/s$. It was expected that floods would eventually scour this 'Wairau Diversion' to its design channel width of 150 m. This did take many more years than initially thought but after approximately 50 years with a little mechanical assistance the Wairau Diversion reached an adequate capacity. Using the power of the river to erode the channel out to its design width and depth was a brilliant idea that saved many thousands of dollars in construction costs and it is somewhat ironic that it is that very same concept that is now being used to deal with the aggradation problem that the Wairau Diversion has caused. The introduction of the Wairau Diversion did provide some flood relief to the lower reaches of the river but unfortunately as the Diversion channel was eroding and enlarging the Lower Wairau River was aggrading and reducing in capacity due to its inability to pass its sediment load with reduced flood flows. It is estimated that approximately $2,000,000m^3$ of sediment was deposited on the bed of the Lower Wairau River in the time between the Diversion's introduction in 1964 and 2010, raising the Lower Wairau's bed upwards of 1.5m in some locations. A numerical morphological model (MIKE-11 ST) was used to assess a number of options which led to the decision and resource consent to construct an erodible (fuse plug) bank at the head of the Wairau Diversion to divert more frequent scouring-flows ($+400m^3/s$)down the Lower Wairau River. Full control gates were ruled out on the grounds of expense. The initial construction of the erodible bank followed in late 2009 with the bank's level at the fuse location set to overtop and begin washing out at a combined Wairau flow of $1,400m^3/s$ which avoids berm flooding in the Lower Wairau. In the three years since the erodible bank was first constructed the Wairau River has sustained 14 events with recorded flows at Tuamarina above $1,000m^3/s$ and three of events in excess of $2,500m^3/s$. These freshes and floods have resulted in washout and rebuild of the erodible bank eight times with a combined rebuild expenditure of $80,000. Marlborough District Council's Rivers & Drainage Department maintains a regular monitoring program for the bed of the Lower Wairau River, which consists of recurrently surveying a series of standard cross sections and estimating the mean bed level (MBL) at each section as well as an overall MBL change over time. A survey was carried out just prior to the installation of the erodible bank and another survey was carried out earlier this year. The results from this latest survey show for the first time since construction of the Wairau Diversion the Lower Wairau River is enlarging. It is estimated that the entire bed of the Lower Wairau has eroded down by an overall average of 60 mm since the introduction of the erodible bank which equates to a total volume of $260,000m^3$. At a cost of $$0.30/m^3$ this represents excellent value compared to mechanical dredging which would likely be in excess of $$10/m^3$. This confirms that the idea of using the river to enlarge the channel is again working for the Wairau River system and that in time nature's "excavator" will provide a channel capacity that will continue to meet design requirements.

  • PDF

Towards a novel approach to improve drinking water quality at Dhaka, Bangladesh

  • Serajuddin, Md.;Chowdhury, Md. Aktarul Islam
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.136-142
    • /
    • 2018
  • The river water source of Saidabad Surface Water Treatment Plant at Dhaka, Bangladesh, is deteriorated too much to be treated by conventional treatment process due to excessive ammonia pollution. In order to improve the raw water quality before it enters into the main treatment chain, a pilot study was conducted for pre-treatment of the raw water. The objective is to investigate the rate of reduction of ammonia using the Meteor pilot, a biological pretreatment system, which is a laboratory scale Moving Bed Biofilm Reactor with a nominal volume of hundred liters, filled with 50 L of Meteor 660 media. The reduction of ammonia was quite significant on average 73%, while the reduction of COD was in a range from 20 to 60%. The Meteor pilot was able to treat and nitrify the raw water and produce an effluent that respects the guarantee of ammonia < $4.0mg\;NH_3-N/L$ when the raw water ammonia concentration was < $15mg\;NH_3-N/L$. The study identified operating parameters necessary to achieve the desired goal of adequate ammonia removal. The study results would benefit a range of systems across the country by providing guidance on the design and operation of a biological pre-treatment system for ammonia removal.

Chronological Study on the Deposits by Indicators of Woody Plants (수목지표(樹木指標)에 의한 하상퇴적지(河床堆積地)의 연대학적(年代學的) 연구(硏究))

  • Chun, Kun Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.3
    • /
    • pp.263-272
    • /
    • 1992
  • In a torrential river, the flow of debris forms deposits in the river bed, which show the characteristics of the channel bed movement in the watershed. The annual rings of the trees, in the natural evenaged forests on the deposits, indicate when each deposit occurred. Based on the topographical and vegetational indicators on the sediment of Yongcheon and Yeounae rivers, the movement occurrence years were estimated. 1. The cross sectional shapes of deposits in torrential river are in tiers and even-aged forests tend to establish on each tier. 2. Generally the older the forest age is, the higher the height of step from the lowest base tend to become, which indicates discrete movement in magnitude and frequency. 3. The ages of trees indicate the year when deposition occurred, and so may be useful as plant indicator to get spatial-temporal information of deposits. 4. The deposits volumes(F. V.) were dependent on the age distribution of deposits in length, average width and average height. And the average width and the average height of deposits were increasing with the age.

  • PDF

Analysis for the Effectiveness of Sedimentation Reduction Using the Channel Contraction Method at the Estuary Barrage (하구둑에서의 하폭축소 방법을 이용한 퇴사저감 효과 분석)

  • Ji, Un;Kim, Gwon-Han;Yeo, Woon-Kwang
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.31-40
    • /
    • 2011
  • In this study, the methods of sedimentation reduction for the estuary barrage were analyzed using the CCHE2D bed change model. Especially, the effectiveness of sediment dredging currently applied in the field was evaluated quantitatively and also the channel contraction method which is a substitute method was analyzed for the Nakdong River Estuary Barrage (NREB). The numerical model was calibrated and validated for the sediment transport equations and transport modes. In the NREB case, the Ackers and White formula and bed load type was the most similar to the field condition. As a results of the dredging simulation, there was the sedimentation reduction effect of 0.2 m in the bed changes. Furthermore, the analysis result of the channel contraction method represented that the sedimentation reduction effects of the average 0.4 m and the maximum 2.0 m were produced.

Summer Vegetation Characteristic of Nature-like Stream Bank Stabilization (자연형 호안공법의 여름철 식생특성)

  • Lee, Kang-Suk;Park, Jin-Ki;Park, Jung-Haw;Yeon, Gyu-Bang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2078-2082
    • /
    • 2009
  • Riparian vegetation distribution patterns and diversity relative to various fluvial geomorphic channel patterns, stream bank stabilization methods, and stream flow processes are described and interpreted for selected stream of Goesan, Central Korea. Idong Stream Pilot Project, which began in May 2003 and finished in December 2003, was selected to develop effective methods. The project aim to maintain or increase stream bank stabilization ecosystem goods and services while protecting downstream and stream bank ecosystem. A number of protecting methods which are a Flight of fieldstone, Vegetation block, Green river block, Stone net, Green environment block, Eco friendly cobble, Vegetation mat and Geo green cell and Firefly block were applied on the bank of Idong stream. The stream sites have been monitored about flora conditions each method in 2007. We selected 12 points for summer seasons to separately investigate in left bank, right bank and river bed. The main purpose of this study was to find out suitable methods and to improve stream restoration techniques for ecosystem. On the stream bank, Eco friendly cobble method(9.57) was the highest average of vegetation cover and Firefly block method(3.87) was the lowest average in applied methods.

  • PDF

Field Measurement and Analysis of Fluvial Sediment in the Cheongmi-Stream(I) - Hydraulic and Sediment Characteristics (청계천에서의 하천 유사 측정 및 분석(I) - 수리량 및 유사량 -)

  • 유권규;우효섭
    • Water for future
    • /
    • v.24 no.2
    • /
    • pp.71-79
    • /
    • 1991
  • Some selected hydraulic characteristics including the average velocitv, geometry of the channel cross-section, and water temperature, and sediment-characteristics including suspended sediment concentration , and the size distributions of suspended and bed-sediments were collected at two measuring stations in the Cheongmi-Stream during a flood period. The river bed investigated for this study is composed completely of sands, and it can be considered a typical alluvial channel. The major results obtained from the analysis of the date collected are as follows: 1) Only during floods, a substantial sediment transport occurs in the river; 2) The stage-discharge relations are changed frequently, especially for low flows; 3) The friction in the flow increases with an increase in the flow discharge; 4) Slits and clays are dominant in suspended sediments during normal flows, while sands are dominant during floods; 5) The vertical distributions of the flow velocity and suspended sediment concentration can be described, respectively, by Prandt1-von Karman's log-law and Rouse's exponential law. It is judged that the above results are commonly adapted for other alluvial rivers, although they were obtained from a limited number of data collected from a specific river reach.

  • PDF

A Study of Channel Migration in Alluvial River (충적하천의 유로이동에 관한 연구)

  • Roh, Sub;Chung, Yong Tai;Song, Jai Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.173-181
    • /
    • 1993
  • Under natural conditions, rivers do not in general take straight courses but instead take winding courses. This is known as meandering of rivers. Meandering of rivers are so complicated because of the mutual interactions between flow and movable boundaries. In quantitative information, it is important to predict the future location of a river channel(channel migration) because in selecting a bridge site or a location of a road. It may be valuable to know the future impact of a nearby river on those structures. When the prediction model of the migration of channel is used in domestic rivers with high coefficient of river regime, it is rational to use the periodical dominant discharge (PDD), which is named firstly by the author, instead of the average discharge. According to the analysis of the erosion coefficient, the mean deviation on the channel migration, and the bed scour factor, it can bring shedding light on the fact that the discharge is one of the dominant components in channel migration. In project area, the discharge that can shift the channel is slightly greater than 6,000CMS. The prediction model of the migration of channel estimated the erosion coefficient, $E_0$ by the data from the South Han River. This estimated value from the South Han River was also used to predict the migration of the South Han River in year 2000.

  • PDF