• Title/Summary/Keyword: Auxiliary energy

Search Result 369, Processing Time 0.026 seconds

Study on the Strategy of CO2 Reduction Technology in Vehicle according to CO2 Emissions Regulation in EU - Focusing on Auxiliary Energy Improvement - (유럽 CO2 감축법에 따른 차량 CO2 감축 기술 전략에 관한 연구 - 보기류 개선을 중심으로 -)

  • Seok, Kyu-Up;Yoon, Hyoung Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.230-238
    • /
    • 2015
  • The main purpose of this paper is to suggest opportunities for reducing $CO_2$ emission in energy conversion of a vehicle, focused on auxiliary energy improvement in the automotive field. As part of worldwide efforts to curb global warming and to protect the domestic industry as trade barriers, many countries have set goals to regulate greenhouse gas emissions. As an example, new $CO_2$ emission regulation in EU was expected to go into effect strictly in 2020. Therefore, global car-makers need to establish strategic responsiveness of the regulations. This paper shows $CO_2$ economic value by using the correct interpretation of the relevant laws and regulations. The $CO_2$ value analyzed using quantitative figures leads to the possibility of auxiliary(accessories, HVAC, electric apparatus etc.) technology for improving fuel economy. As a result, this study generalizes the meaning of electric power saving for each driving mode by auxiliary energy improvement.

A Development of GUI System for Optimal Operational Scheduling on Industrial Cogeneration Systems Using Evolutionary Algorithms (산업체 열병합발전시스템에서 최적운전계획 수립을 위한 진화 알고리즘을 이용한 GUI System 개발)

  • Jeong, Ji-Hoon;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.11
    • /
    • pp.544-550
    • /
    • 2002
  • This paper describes a strategy of a daily optimal operational scheduling on the industrial cogeneration system. The cogeneration system selected to establish the scheduling consists of three units and several auxiliary devices which include three auxiliary boilers, t재 waste boilers and three sludge incinerators. One unit generated electrical and thermal energy using the back pressure turbine. The other two units generate the energy using the extraction condensing turbine. Three auxiliary devices operate to supply energy to the loads with three units. The cogeneration system is able to supply enough the thermal energy to the thermal load, however it can not sufficiently supply the electric energy to the electrical load. Therefore the insufficient electric energy is compensated by buying electrical energy from utility. In this paper, the evolutionary algorithms was applied to establish the optimal scheduling for the cogeneration systems. Also the GUI System was developed using established mathematics medeling and evolutionary algorithms in order that non-experts are able to establish operational scheduling. This results revel that the proposed modeling and strategy can be effectively applied to cogeneration system for paper mill.

A Flyback Transformer linked Soft Switching PWM DC-DC Power Converter using Trapped Energy Recovery Passive Quasi-Resonant Snubbers with an Auxiliary Three-Winding Transformer

  • Ahmed Tarek;Chandhaket Srawouth;Nakaoka Mutsuo;Jung Song Hwa;Lee Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.237-245
    • /
    • 2004
  • In this paper, a two-switch high frequency flyback transformer linked zero voltage soft switching PWM DC-DC power converter implemented for distributed DC- feeding power conditioning supplies is proposed and discussed. This switch mode power converter circuit is mainly based on two main active power semiconductor switches and a main flyback high frequency transformer linked DC-DC converter in which, two passive lossless quasi-resonant snubbers with pulse current regeneration loops for energy recovery to the DC supply voltages composed of a three winding auxiliary high frequency pulse transformer, auxiliary capacitors and auxiliary diodes for inductive energy recovery discharge blocking due to snubber capacitors are introduced to achieve zero voltage soft switching from light to full load conditions. It is clarified that the passive resonant snubber-assisted soft switching PWM DC-DC power converter has some advantages such as simple circuit configuration, low cost, simple control scheme, high efficiency and lowered noises due to the soft switching commutation. Its operating principle is also described using each mode equivalent circuit. To determine the optimum resonant snubber circuit parameters, some practical design considerations are discussed and evaluated in this paper. Moreover, through experimentation the practical effectiveness of the proposed soft switching PWM DC-DC power converter using IGBTs is evaluated and compared with a hard switching PWM DC-DC power converter.

Development of a Low Pressure Auxiliary Fan for Local Large-opening Limestone Mines (대단면국내석회석광산용저풍압국부선풍기개발연구)

  • Lee, Chang Woo;Nguyen, Van Duc
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.543-555
    • /
    • 2015
  • At present, local limestone mines with large opening employ auxiliary fans for workplace ventilation which have been used in coal mines with much smaller airways. Considering the low static pressure loss in the large-opening mines, high pressure auxiliary fans face serious economical limitations mainly due to their excessive capacity. The optimal fan selected for the ventilation in large-opening working places should supply air quantity enough for maintaining safe environment and keep its operating cost as low as possible. This study focuses on the development of a low pressure auxiliary fan designed to have smaller range of the static head but to have more potential for higher ventilation and energy efficiency. The flow characteristics of high and low pressure auxiliary fans were theoretical as well as experimentally investigated to assess the ventilation efficiency in term of environmental and economical aspects. Moreover, the low pressure fan was tested in two limestone mine sites with small and large cross-sectional areas for evaluating its ventilation efficiency. Results from this study can be applied to improve the economy and efficiency of auxiliary fan for ensuring better air quality and work environment management.

Operation Performance Evaluation on Auxiliary Heating Device to Prevent Condensation adjacent to Built-in Furniture of Apartment Units in Winter (기존 공동주택 붙박이장에서 겨울철 결로 방지를 위한 보조난방장치 운전 성능 평가)

  • Lee, Chae-Lyn;Lee, Hyun-Hwa;Lim, Jae-Han;Song, Seung-Yeong
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.567-578
    • /
    • 2018
  • The purpose of this study was to evaluate condensation prevention for condensation vulnerable areas around built-in furniture of apartment buildings by applying auxiliary heating device. Recently, the condensation and mold problems of apartment buildings has been growing due to high insulation and high air-tightness performance for energy saving. Condensation at built-in furniture were generally found in winter at the of furniture's back panels, adjacent surfaces of wall, floor and ceiling. These problems are related to the weather conditions and indoor room conditions in winter. To solve these problems, auxiliary heating device was developed and could be installed. The aim of paper is to analyze the thermal environment around the built-in furniture which were applied and not applied auxiliary heating device in winter. In results, it was possible to increase the surface temperature of vulnerable areas around built-in furniture by applying auxiliary heating device, and to minimize condensation problems by using the minimum device.

The Auxiliary Power Compensation Unit for Stand-Alone Photovoltaic/Wind Hybrid Generation System (독립형 소형 태양광/풍력 복합발전시스템의 출력안정화를 위한 보조 전력보상장치개발에 관한 연구)

  • Park, Se-Jun;Yoon, Jeong-Phil;Kang, Byung-Bog;Yoon, Hyung-Sang;Cha, In-Su;Lim, Jung-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.47-54
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested. But, hybrid generation system cannot always generate stable output due to the varying weather condition. So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

Optimal Soft-Switching Scheme for Bidirectional DC-DC Converters with Auxiliary Circuit

  • Lee, Han Rim;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.681-693
    • /
    • 2018
  • This paper proposes a soft-switching bidirectional dc-dc converter (BDC) with an auxiliary circuit. The proposed BDC can achieve the zero-voltage switching (ZVS) using an auxiliary circuit in the buck and boost operations. The auxiliary circuit supplies optimal energy for the ZVS operation of the main switches. The auxiliary circuit consists of a resonant inductor, a back-to-back switch and two capacitors. A small-sized resonant inductor and an auxiliary switch with a low-rated voltage can be used in the auxiliary circuit. Zero-current switching (ZCS) turn-on and turn-off of the auxiliary switches are possible. The proposed soft-switching scheme has a look-up table for optimal switching of the auxiliary switches. The proposed strategy properly adjusts the turn-on time of the auxiliary switch according to the load current. The proposed BDC is verified by the results of PSIM simulations and experiments on a 3-kW ZVS BDC system.

A Study on the Energy Recovery of AC PDP Driving Circuits (AC PDP 구동회로의 에너지 회생에 관한 연구)

  • Jung Woo-Chang;Kang Kyung-Woo;Yoo Jong-Gul;Hong Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.267-270
    • /
    • 2003
  • In this paper, a new energy recovery circuit for AC PDP(Plasma Display Panel) is proposed to decrease a sustain voltage and voltage stress on switching elements. In the proposed circuit, two auxiliary capacitors are connected directly to the power source through switching elements and inductors when ground potential is supplied to the panel. Therefore, the voltage across auxiliary capacitors can be increased by turns over the half of the source voltage. Because the intrinsic capacitance of PDP is charged sufficiently from the auxiliary capacitors, the level of sustain voltage and the voltage stress on the switching devices are decreased. To verify the validity of the proposed energy recovery circuit, computer simulations using PSpice program are carried out.

  • PDF

A Study on the Modeling and Design of Single Phase Induction Generators

  • Kim Cherl-Jin;Lee Kwan-Yong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.331-336
    • /
    • 2005
  • With increasing emphasis on non-conventional energy systems and autonomous power generation, development of improved and appropriate generating systems has recently taken on greater significance. This paper describes the performance analysis of a single phase self-excited induction generator (SEIG), suitable for autonomous/standby power systems. The system is also appropriate for wind energy systems and small portable systems. Both windings of the induction machine, the main and the auxiliary, are utilized. One winding will be devoted to the supply excitation current only, by being connected to the excitation capacitor, while the load is connected across the other winding. As the design of excitation, the minimum of self-excited capacitor connected auxiliary winding is determined as the suitable value using a circuit equation of auxiliary winding. For the steady state analysis, the equivalent circuit of the single-phase induction generators is used as a basis for modeling using the double-revolving field theory. The validity of the designed generator system is confirmed by experimental and computed results.

A Rational Operation Scheduling for Operating Cost Saving in Cogeneration System for Paper Mill (제지공장용 열병합발전시스템의 운용비용절감을 위한 합리적 운전계획수립에 관한 연구)

  • 최광범;이종범
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.512-518
    • /
    • 1999
  • This paper proposed the optimal operational scheduling of cogeneration system for paper mill connected with several auxiliary devices Auxiliary devices that include auxiliary boilers, waste heat boilers and sludge uncinerators operate with multi-cogeneration systems. Especially environment element was considered in objective function to solve environment problem. Electricity can be purchased through power system from utility. The proposed operational strategy on cogeneration system for paper mill to increase energy efficiency can be applied to the similar cogeneration system is industrial field.

  • PDF