• Title/Summary/Keyword: Auxiliary building

Search Result 81, Processing Time 0.029 seconds

An Industrial Manipulator for Shipbuilding;Off-Line Programming and Open Architecture

  • Lee, Ji-Hyoung;Hong, Kyung-Tae;Oh, Seung-Min;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.397-402
    • /
    • 2005
  • In this paper, to improve the efficiency of welding and user convenience in the shipbuilding industry, a PC-based off-line programming (OLP) technique and the development of a robot transfer unit are presented. The developed OLP system is capable of not only robot motion simulations but also automatic generations of a series of robot programs. The strength of the developed OLP system lies in its flexibility in handling the changes of the welding robot's target objects. Moreover, for a precise transfer of the robot to a desired location, an auxiliary mobile platform named a robot-origin-transfer-unit (ROTU) was developed. To enhance the cornering capability of the platform in a narrow area, the developed ROTU is equipped with 2 steering wheels and 1 driving wheel. Both the OLP and the ROTU were field-tested and their performances were proven successful.

  • PDF

Application of the auxiliary tunnel reinforcement design using the decision making tools based on expert system integrated fuzzy inference rule

  • Kim Changyong;Hong Sungwan;Bae Gyujin;Kim Kwangyeom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.262-271
    • /
    • 2003
  • Specification of reinforcement method was suggested according to the ground condition and tunnelling environment such as adjacent building and surface settlement. Tunnel database consists of 8 different groups of data according to the tunnel construction situations and major problems of ground. A tunnel countermeasure expert system based on client/server system was developed with on-line. The expert system provides proper solution to the each construction sites backing up the information of the tunnelling and ground information through Internet. The effective factors of tunnel construction were shown by the analyzing relationship and partial relationship between face stability and RMR factors. This study will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system escaping from the dependence of some experienced experts for the absent of guide.

  • PDF

Identification of Linear Structural Systems (선형 구조계의 동특성 추정법)

  • 윤정방
    • Computational Structural Engineering
    • /
    • v.2 no.4
    • /
    • pp.111-116
    • /
    • 1989
  • Methods for the estimation of the coefficient matrices in the equation of motion for a linear multi-degree-of-freedom structure are studied. For this purpose, the equation of motion is transformed into an auto-regressive and moving average with auxiliary input(ARMAX) model. The ARMAX parameters are evaluated using several methods of parameter estimation : such as the least squares, the instrumental variable, the maximum likelihood and the limited information maximum likelihood methods. Then the parameters of the equation of motion are recovered therefrom. Numerical example is given for a 3-story building model subjected to an earthquake exitation.

  • PDF

Off-Line Programming in the Shipbuilding Industry: Open Architecture and Semi-Automatic Approach

  • Lee Ji-Hyoung;Kim Chang-Sei;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.32-42
    • /
    • 2005
  • In this paper, to improve the efficiency of welding and user convenience in the shipbuilding industry, a PC-based off-line programming (OLP) technique and the development of a robot transfer unit are presented. The developed OLP system is capable of not only robot motion simulations but also automatic generations of a series of robot programs. The strength of the developed OLP system lies in its flexibility in handling the changes of the welding robot's target objects. Moreover, for a precise transfer of the robot to a desired location, an auxiliary mobile platform named a robot-origin-transfer-unit (ROTU) was developed. To enhance the cornering capability of the platform in a narrow area, the developed ROTU is equipped with 2 steering wheels and 1 driving wheel. Both the OLP and the ROTU were field­tested and their performances were proven successful.

CCDP Evaluation of the Eire Areas in NPP Applying CEAST Model (II) (화재모델 CFAST를 이용한 원전 화재구역의 CCDP평가(II))

  • Lee Yoon-Hwan;Yang Joon-Eon;Kim Jong-Hoon;Kim Woon-Byung
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.20-27
    • /
    • 2005
  • This paper evaluates the fire safety level of eight pump rooms in the nuclear power plant using a fire model, CFAST We estimate the Conditional Core Damage Probability (CCDP) of each room based on the analyzed results of CFAST Eight rooms located on the primary auxiliary building of the nuclear power plant are high pressure safety injection pump room A/B, low pressure safety injection pump room Am. containment sprdy pump room A/B, and motor-driven auxiliary feed water pump room A/B. The upper layer gas temperature of each room is estimated and the integrity of cable is reviewed. Based on the results, the integrity of the cable located at the upper part of compartment is maintained without thermal damage. The Conditional Core Damage Probability Is reduced to half of the old values. Accordingly, the fire safety assessment for eight pump rooms using the fire model will be capable of reducing the uncertainty and to develop a more realistic model.

The Effect of Out-of-Plane Load on the In-Plane Shear Capacity of Reinforcement Concrete Shear Wall (철근 콘크리트 전단벽에서 면외 하중이 면내 전단성능에 미치는 영향)

  • Shin, Hye Min;Park, Jun Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.77-83
    • /
    • 2024
  • The design shear strength equations of RC shear walls have been developed based on their performance under in-plane (IP) loads, thereby failing to account for the potential performance degradation of shear strength when subjected to simultaneous out-of-plane (OOP) loading. Most of the previous experimental studies on RC walls have been conducted in one direction under quasi-static conditions, and due to the difficulty in experimental planning, there is a lack of research on cyclic loading and results under multi-axial loading conditions. During an earthquake, shear walls may yield earlier than their design strength or fail unexpectedly when subjected to multi-directional forces, deviating from their intended failure mode. In this paper, nonlinear analysis in finite element models was performed based on the results of cyclic loading experiments on reinforced concrete shear walls of auxiliary buildings. To investigate the reduction trend in IP shear capacity concerning the OOP load ratio, parametric analysis was conducted using the shear wall FEM. The analysis results showed that as the magnitude of the OOP load increased, the IP strength decreased, with a more significant effect observed as the size of the opening increased. Thus, the necessity to incorporate this strength reduction as a factor for the OOP load effect in the wall design strength equation should be discussed by performing various parametric studies.

A Performance Measurement and Evaluation of a 400RT Vertical type Geothermal System installed in a Complex Building Before Occupancy (복합용도 건물에 적용된 400RT급 수직형 지열시스템의 입주전 성능평가)

  • Hwang, Kwang-Il;Shin, Dong-Keol;Kim, Joong-Hun;Shin, Seung-Ho;Jung, Myoung-Kwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.7-14
    • /
    • 2008
  • 400RT geothermal system which is the biggest capacity among on-operations at present in Korea is measured and evaluated on 23rd${\sim}$26th Jan. 2008 during those days building is not allowed owners and/or tenants to move in. The geothermal system is consist with vertical-typed 112 geothermal heat exchangers which are installed circle-like 1 row with 4m interval, and has 16 units of 25USRT geothermal-source heat pump(GSHP)s. And each 5 units of circulation pump are running for geothermal heat exchangers and hot water supplies. The followings are the results. The temperatures at G.L. -70m of 2 boreholes are varied quite similarly. The average temperature difference between inlet and outlet of geothermal pipes is $4.1^{\circ}C$, and that of hot water supply is $3.2^{\circ}C$, of Zone 3's each 4 GSHPs when being operated. Despite temperature fluctuations by heating loads, the average temperature difference between main pipes of inlet and outlet of geothermal heat exchangers is measured as $4.1^{\circ}C$. This study propose "Geothermal System COP" which includes not only consumed electric power by compressor but also circulation pumps and auxiliary utilities. By comparing the geothermal system COP with GSHP's performance specification, it is clear that the performances of GHSPs of this site are satisfied with the specification.

Development of Advanced Dynamic Cone Penetration Test Apparatus and Its Application Performance Evaluation (개량식 동적 콘 관입시험기의 개발 및 적용성 평가)

  • Kim, Uk-Gie;Zhuang, Li;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.119-131
    • /
    • 2014
  • For quick and accurate ground investigation in wide construction site being not easy to access, advanced dynamic cone penetration test equipment was developed based on widely used equipment abroad. Advantages of existing equipment of portability and simple testing method were reflected in the new developed equipment. Meanwhile, by extending connection of lower rod, penetration depth is raised to 6m from 1 m of the existing equipment. Moreover, by assembly of hammer (2+3+3kg) and cone (3 types) etc., it is possible to perform test under the same conditions with those by German and Japan dynamic cone penetration test equipment (Tsukuba, PWRI and SH types). Auxiliary equipment was applied to make sure of perpendicularity as penetration depth increases. Applicability of the new developed equipment was evaluated through tests on various fields and its reliability was verified.

Assessment of Accident Level Based on Contract Amount by Type of Construction (공사유형별 건설수주액을 고려한 건설재해수준 평가기법)

  • Yi, Kyoo-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.157-163
    • /
    • 2021
  • The accident rate is obtained by dividing the number of accidents by the number of regular workers. In the case off construction work, however, the accident rates are not accurately figured out, because they use the approximate number of regular workers, which is estimated based on the amount of construction work and the labor ratio. In addition, the current accident rate estimation method does not reflect the characteristics of construction types, such as building, civil, plant, etc. This study is conducted with the aim of presenting a supplementary method of accident rate assessment that incorporates the characteristics of type of construction. For the purpose of this, correlation and regression analysis are executed to verify the relationships between number of accidents and the amount of construction contract, and several equations are derived which shows the relationship between the number of accidents by accident types and amount of constract by construction types. The result shows that the non-residential work amount and the number of accidents showed a proportional relationship, while the civil work amount and the number of accidents showed an inversely proportional relationship. The results of this research are expected to calibrate the construction accident rates and to be used as an auxiliary indicator to determine the trend of annual accident rates by comparing the values with usual years.

Full Scale Testing of the Effect of Stairwell Pressurization on Pressure Differential and Flow Velocity

  • Son, Bong-Sae;Park, Kyung-Hwan;Chang, Young-Bae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.83-89
    • /
    • 2011
  • A series of full-scale testing was conducted to examine the effect of stairwell pressurization on the pressure differential between the stairwell and the auxiliary room and between the auxiliary room and the residence. Also, flow velocity profiles at open doors were measured. The building tested was a condominium that had twenty floors above the ground and two floors underground. For pressurization of the stairs, a blower was used to supply air into the stairwell at one location underground. Thirteen different cases were tested, and test variables included the number of floors with open doors and the flow rate of the air supply. When the doors on the first floor were open, the pressure differential between the stairwell and the auxiliary room was distributed almost uniformly except for locations near the first floor. When the flow rate was in the range of 180~270 CMM and the doors of one floor were open, the flow velocity could satisfy the requirement of fire safety standards and the stairwell pressure was positive at all levels. However, the minimum pressure requirement (10 Pa) could not always be satisfied. When doors on two floors were open, the flow velocity requirement could be satisfied by increasing the flow rate, but it was found impractical to satisfy the minimum pressure requirement without causing excessive pressure differential in the area near the blower.