• Title/Summary/Keyword: Autonomous Parking System

Search Result 28, Processing Time 0.019 seconds

Design of Intelligent Parking System for Autonomous Vehicle at the Slant Space (자율주행 차량을 위한 지능형 경사 주차 시스템 설계)

  • Hao, Yang-Hua;Kim, Tae-Kyun;Choi, Byung-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.219-222
    • /
    • 2008
  • Recently, parking problems for an autonomous vehicle have attracted a great deal of attention and have been examined in many papers in the literature. In this paper we design a fuzzy logic based parking system at the slant parking space which is a important part for designing a autonomous parking system. We first design an optimal parking path for the slant space and present the simulation results of the fuzzy logic based parking system.

  • PDF

Design of Fuzzy Logic Based Parking Systems for Intelligent Vehicles (지능형 자동차를 위한 퍼지논리기반 주차 시스템 설계)

  • Hao, Yang-Hua;Kim, Tae-Kyun;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.109-115
    • /
    • 2008
  • Recently, autonomous parking problems have attracted a great deal of attention and have been examined in many papers in the literature. In this paper we design a fuzzy logic based parking system which is an important part for designing an autonomous parking system. We first analysis the existed papers and design a single-input fuzzy logic system for the parking algorithm and illustrate the effectiveness of the new method via the simulation results.

Parking Space Recognition for Autonomous Valet Parking Using Height and Salient-Line Probability Maps

  • Han, Seung-Jun;Choi, Jeongdan
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1220-1230
    • /
    • 2015
  • An autonomous valet parking (AVP) system is designed to locate a vacant parking space and park the vehicle in which it resides on behalf of the driver, once the driver has left the vehicle. In addition, the AVP is able to direct the vehicle to a location desired by the driver when requested. In this paper, for an AVP system, we introduce technology to recognize a parking space using image sensors. The proposed technology is mainly divided into three parts. First, spatial analysis is carried out using a height map that is based on dense motion stereo. Second, modelling of road markings is conducted using a probability map with a new salient-line feature extractor. Finally, parking space recognition is based on a Bayesian classifier. The experimental results show an execution time of up to 10 ms and a recognition rate of over 99%. Also, the performance and properties of the proposed technology were evaluated with a variety of data. Our algorithms, which are part of the proposed technology, are expected to apply to various research areas regarding autonomous vehicles, such as map generation, road marking recognition, localization, and environment recognition.

Development of Control System for Autonomous Parallel Parking (자율적 평행주차 제어시스템의 개발)

  • 손민혁;부광석;송정훈;김흥섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.176-182
    • /
    • 2003
  • The researches for autonomous vehicle have been implemented in many studies, but most studies were confined to the lane fol1owing and changing. This paper addresses a problem of autonomous lane following parking a nonholonomic vehicle. The algorithm for image processing by the hough transform and controlling a steering angle and speed to park a nonholonomic vehicle is developed. The developed system which integrated the control algorithm for parking and vision algorithm for line traction tested with RC car and verified by the performance of the detection of parking area and the reactive parking without collisions.

Design of Backward Parking System using Fuzzy Logic (퍼지논리에 의한 후방주차 시스템 설계)

  • Hao, Yang-Hua;Kim, Tae-Kyun;Choi, Byung-Jae;Yoo, Seog-Hwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.337-340
    • /
    • 2007
  • Recently, autonomous parking problems have attracted a great deal of attention and have been examined in many papers in the literature. In this paper we design a fuzzy logic based garage parking system which is a important part for designing a autonomous parking system. We first analysis the existed papers and design a single-input fuzzy logic control for the parking algorithm and illustrate the effectiveness of the new method via the simulation results.

  • PDF

Design of Intelligent Parking System for Autonomous Vehicle at the Slant Space (자율주행 차량을 위한 지능형 경사 주차 시스템 설계)

  • Hao, Yang-Hua;Kim, Tae-Kyun;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.506-511
    • /
    • 2008
  • Recently, it is widely progressed that the research of the performance improvement of an intelligent vehicle. Among them, its parking problem has attracted a great deal of attention and have been examined in many papers in the literature. In this paper we design a fuzzy logic based parking system at the slant parking space which is a important part for designing an autonomous parking system. We first design a parking path for the slant space and propose a fuzzy logic based parking algorithm. We present its simulation results and show the effectiveness of the proposed method.

A Study on Designing Autonomous Parking Assistance using Fuzzy Controller (퍼지제어기를 이용한 자율주차시스템 구현에 관한 연구)

  • Choo, Yeon-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.70-76
    • /
    • 2013
  • Recently, the performance and function of electrical and electronic system in automotive vehicles is developing at a rapid rate with the advancement of IT technologies. Combined together with micro-controller and sensor technologies, the Vehicle Smart System (VSS) being developed to improve driver's convenience and comfort has been employed to a variety of applications. In addition to the convenience system, the Auto-parking Assistance System (AAS) that is now attracting a new attention has been already applied to some vehicles, but it is currently limited to luxury car models only. In this paper, we present a fuzzy controller that enables autonomous parking assistance without the AAS. The controller can perform the assistance with information provided from moving status, current position and steering angle as one is able to park a car based on his/her experience and knowledge for driving and parking. We have evaluated its performance of the proposed controller by simulation and tested the excellence of the controller by building a model vehicle embedded with the micro-controllers.

A Comparative Study of Parking Path Following Methods for Autonomous Parking System (자율 주차 시스템을 위한 주차 경로 추종 방법의 비교 연구)

  • Kim, Minsung;Im, Gyubeom;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.147-159
    • /
    • 2020
  • Over the last years, a number of different path following methods for the autonomous parking system have been proposed for tracking planned paths. However, it is difficult to find a study comparing path following methods for a short path length with large curvature such as a parking path. In this paper, we conduct a comparative study of the path following methods for perpendicular parking. By using Monte-Carlo simulation, we determine the optimal parameters of each controller and analyze the performance of the path following. In addition, we consider the path following error occurred at the switching point where forward and reverse paths are switched. To address this error, we conduct the comparative study of the path following methods with the one thousand switching points generated by the Monte-Carlo method. The performance of each controller is analyzed using the V-rep simulator. With the simulation results, this paper provides a deep discussion about the effectiveness and limitations of each algorithm.

Design of Genetic Algorithm-based Parking System for an Autonomous Vehicle

  • Xiong, Xing;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.275-280
    • /
    • 2009
  • A Genetic Algorithm (GA) is a kind of search techniques used to find exact or approximate solutions to optimization and searching problems. This paper discusses the design of a genetic algorithm-based intelligent parking system. This is a search strategy based on the model of evolution to solve the problem of parking systems. A genetic algorithm for an optimal solution is used to find a series of optimal angles of the moving vehicle at a parking space autonomously. This algorithm makes the planning simpler and the movement more effective. At last we present some simulation results.

Autonomous Parking of a Model Car with Trajectory Tracking Motion Control using ANFIS (ANFIS 기반 경로추종 운동제어에 의한 모형차량의 자동주차)

  • Chang, Hyo-Whan;Kim, Chang-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.69-77
    • /
    • 2009
  • In this study an ANFIS-based trajectory tracking motion control algorithm is proposed for autonomous garage and parallel parking of a model car. The ANFIS controller is trained off-line using data set which obtained by Mandani fuzzy inference system and thereby the processing time decreases almost in half. The controller with a steering delay compensator is tuned through simulations performed under MATLAB/Simulink environment. Experiments are carried out with the model car for garage and parallel parking. The experimental results show that the trajectory tracking performance is satisfactory under various initial and road conditions