• 제목/요약/키워드: Automotive bushing

검색결과 42건 처리시간 0.02초

차량현가장치용 일래스토메릭 부시으이 비선형점탄성 모델연구 (I) -축 방향 모드- (A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Automotive Suspension System (I) -Axial Mode-)

  • 이성범
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.154-161
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer suface. The relation between the force applied to the shaft or sleeve and their relative deformation is nolinear and exhibits features of viscoelasticity. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the force relaxation function of the bushing. The new nonlinear viscoelastic bushing model, which is called Pipkin-Rogers model, is proposed and it is shown that the predictions of the proposed force-displacement relation are in very good agreement with the exact results. This new bushing model is thus very suitable for use in multi-body dynamics codes. The success of the present study for axial mode response suggests that the same approach be applied to other modes, such as torsional or radial modes.

  • PDF

EXPERIMENTAL STUDY ON THE BUSHING CHARACTERISTICS UNDER SEVERAL EXCITATION INPUTS FOR BUSHING MODELING

  • Ok, J.K.;Yoo, W.S.;Sohn, J.H.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.455-465
    • /
    • 2007
  • The bushing element shows nonlinear characteristics in both displacements and frequencies, also with hysteretic responses for repeated vibrational excitations. Since the characteristics of the rubber bushing significantly affects the accuracy of the vehicle dynamic simulation result, it should be accurately modeled in the vehicle suspension model. To develop an accurate bushing model for vehicle dynamics analysis, the bushing characteristics under several excitation inputs must be known. In this paper, a 3-axis tester was used to capture the bushing characteristics. The random inputs, sine inputs, and step inputs were imposed on each axis of the bushing. Also, two-axis inputs, the radial-axial and radial-normal inputs, were simultaneously imposed on the tester. Three-axis inputs including the radial-axial-normal direction were supplied to the tester. Bushing characteristics of each case were precisely analyzed. These results could be available for dynamic modeling of bushing.

자동차 부싱에 대한 Pipkin-Rogers 모델의 실험적 연구 (An Experimental Study of Pipkin-Rogers Model for Automotive Bushing)

  • 김성진;이수용;이성범
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.118-124
    • /
    • 2005
  • An automotive bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force applied to the shaft and the relative deformation of a bushing is nonlinear and exhibits features of viscoelasticity. In this paper, an automotive bushing is regarded as nonlinear viscoelastic incompressible material. Instron 8801 equipment was used for experimental res earch and ramp-to-constant displacement control test was used for data acquisition. Displacement dependent force relaxation function was obtained from the force extrapolation method and expressed as the explicit combination of time and displacement. Pipkin-Rogers model, which is the direct relation of force and displacement, was obtained and comparison studies between the experimental results and the Pipkin-Rogers results were carried out.

효율적인 신경망 부싱모델을 위한 신경망 구성 최적화 (Optimization of Neural Network Structure for the Efficient Bushing Model)

  • 이승규;김광석;손정현
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.48-55
    • /
    • 2007
  • A bushing component of a vehicle suspension system is tested to capture the nonlinear behavior of rubber bushing element using the MTS 3-axes rubber test machine. The results of the tests are used to model the artificial neural network bushing model. The performances from the neural network model usually are dependent on the structure of the neural network. In this paper, maximum error, peak error, root mean square error, and error-to-signal ratio are employed to evaluate the performances of the neural network bushing model. A simple simulation is carried out to show the usefulness of the developed procedure.

Bouc-Wen 모델을 이용한 차량동역학 해석용 1축 부싱모델의 개발 (Development of Uni-Axial Bushing Model for the Vehicle Dynamic Analysis Using the Bouc-Wen Hysteretic Model)

  • 옥진규;유완석;손정현
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.158-165
    • /
    • 2006
  • In this paper, a new uni-axial bushing model for vehicle dynamics analysis is proposed. Bushing components of a vehicle suspension system are tested to capture the nonlinear and hysteric behavior of the typical rubber bushing elements using the MTS machine. The results of the tests are used to develop the Bouc-Wen bushing model. The Bouc-Wen model is employed to represent the hysteretic characteristics of the bushing. ADAMS program is used for the identification process and VisualDOC program is also used to find the optimal coefficients of the model. Genetic algorithm is employed to carry out the optimal design. A numerical example is suggested to verify the performance of the proposed model.

자동차 서스펜션 설계를 위한 CAE기법의 개발(I) -부싱 모듈 개발- (Development of CAE Tools for Vehicle Suspension Design(I) -Development of a Bushing Module-)

  • 최용철;김광석;김외조;유완석
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.31-39
    • /
    • 1998
  • The role of bushing elements linked between suspension parts is to enhance ride quality and handling stability by the spring and damping effect from the elastic deformation. In this paper, a theoretical derivation and computer implementation off a bushing element are proposed. Three different vehicle models are generated to test the developed bushing module. The developed bushing module is implemented as a bushing module in the vehicle dynamic analysis program AUTODYN7.

  • PDF

유연 지그를 이용한 서스펜션 부싱의 비틀림 및 원추 강성 측정기 개발 (Development of a Measurement System of Torsional and Conical Suspension Bushing Rates with the Flexible Jig)

  • 이재곤;박용국;김기대
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.121-127
    • /
    • 2003
  • The stiffness of a bushing in a suspension is extremely important for the overall performance of the suspension system. A new measurement system including the flexible jig was developed to measure the multi-directional stiffness of bushings. To overcome the disadvantage of building each individual jig for each type and size of a bushing, we designed the flexible jig which can accommodate numerous bushings of similar shapes and sizes. Upon using the novel design of the flexible jig in the industry, we could successfully measure the torsional and conical stiffness of many bushings and apply the data for the prediction and evaluation of the performance of a suspension system, which would assist designing the optimal suspension system.

인공신경망 부싱모델을 사용한 전차량 동역학 시뮬레이션 (Vehicle Dynamic Simulation Using the Neural Network Bushing Model)

  • 손정현;강태호;백운경
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.110-118
    • /
    • 2004
  • In this paper, a blackbox approach is carried out to model the nonlinear dynamic bushing model. One-axis durability test is performed to describe the mechanical behavior of typical vehicle elastomeric components. The results of the tests are used to develop an empirical bushing model with an artificial neural network. The back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra's algorithm of ‘NARMAX’ form is employed in the neural network bushing module. A numerical example is carried out to verify the developed bushing model.

축방향 모드에 대한 자동차 부싱의 점탄성 모델링 (Viscoelastic Modeling of Automotive Bushing for Axial Mode)

  • 이성범;이수용
    • Elastomers and Composites
    • /
    • 제39권3호
    • /
    • pp.228-233
    • /
    • 2004
  • 자동차 부싱은 차체로 전달되는 하중을 줄여주는 역할을 하는 자동차 현가장치의 주요 부품으로 바깥쪽 슬리브와 안쪽의 축 사이에서 가운데가 비어있는 실린더의 형상을 가진다. 차축에 작용되는 하중과 부싱의 상대 변위는 비선형 점탄성 성질을 나타내며, 부싱에서 힘과 변위의 관계는 다물체 동역학 시뮬레이션에 매우 중요하다. 본 연구는 실험을 바탕으로 하여, 자동차 부싱에 대한 힘과 변위의 비선형 점탄성 관계를 변위에 의존하는 힘 완화함수로 표현하여 이를 유도하는 방법을 개발하였으며, 완성된 비선형 점탄성 부싱 모델은 ??킨-라저스 모델로 명명하여 실험값과 비교하여 검증하였다.

승용차 현가모듈 설계를 위한 새로운 부싱모델 개발 (Development of a New Bushing Model for Vehicle Suspension Module Design)

  • 옥진규;박동운;유완석;손정현
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.143-150
    • /
    • 2006
  • In this paper, a new bushing model for vehicle dynamics analysis using Bouc-Wen hysteretic model is proposed. Bushing components of a vehicle suspension system are tested to capture the nonlinear behavior of rubber bushing elements using the MTS 3-axes rubber test machine. The results of the tests are used to define parameters in Bouc-Wen bushing model, which was employed to represent the hysteretic characteristics of the bushing. Bushing parameters are obtained by using genetic algorithms and sensitivity analysis of parameters are also carried out. ADAMS program was used for the identification process and VisualDOC program was employed to find the optimal parameters. A half-car simulation was carried out to show the usefulness of the developed bushing model.