• 제목/요약/키워드: Automotive Functional Safety

검색결과 44건 처리시간 0.025초

On the Ensuring Safety and Reliability through the Application of ISO/PAS 21448 Analysis and STPA Methodology to Autonomous Vehicle

  • Kim, Min Joong;Choi, Kyoung Lak;Kim, Joo Uk;Kim, Tong Hyun;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권3호
    • /
    • pp.169-177
    • /
    • 2021
  • Recently, the use of electric and electronic control systems is increasing in the automobile industry. This increase in the electric and electronic control system greatly increases the complexity of designing a vehicle, which leads to an increase in the malfunction of the system, and a safety problem due to the malfunction is becoming an issue. Based on IEC 61508 relating to the functional safety of electrical/electronic/programmable electronics, the ISO 26262 standard specific to the automotive sector was first established in 2011, and a revision was published in 2018. Malfunctions due to system failure are covered by ISO 26262, but ISO/PAS 21448 is proposed to deal with unintended malfunctions caused by changes in the surrounding environment. ISO 26262 sets out safety-related requirements for the entire life cycle. Functional safety analysis includes FTA (Fault Tree Analysis), FMEA (Failure Mode and Effect Analysis), and HAZOP (Hazard and Operability). These analysis have limitations in dealing with failures or errors caused by complex interrelationships because it is assumed that a failure or error affecting the risk occurs by a specific component. In order to overcome this limitation, it is necessary to apply the STPA (System Theoretic Process Analysis) technique.

FMEDA 기법을 적용한 SIL 등급 판정에 관한 사례연구 (Case Study on the Assessment of SIL Using FMEDA)

  • 김병철;김영진
    • 산업공학
    • /
    • 제25권4호
    • /
    • pp.376-381
    • /
    • 2012
  • As the number, complexity and interaction of electrical, electronic and programmable electronic (E/E/PE) systems increase, a growing emphasis has been placed on the concept of functional safety during product development. IEC 61508 provides guidelines and standardized procedures in the development of reliable and dependable E/E/PE systems to assure functional safety. Determining risk classes (i.e., safety integrity levels, SILs) associated to a specific E/E/PE item may be recognized as one of the most crucial activities in the product development per IEC 61508 since SILs are used to specify necessary safety requirements for achieving an acceptable residual risk. This article presents a case study on the assessment of SILs applying failure modes, effects and diagnostic analysis (FMEDA) from which failure rates may be derived for each important failure category by combining a standard FMEA with online diagnostic techniques.

RESULTS OF FUNCTIONAL SIMULATION FOR ABS WITH PRE-EXTREME CONTROL

  • IVANOV V.;BELOUS M.;LIAKHAU S.;MIRANOVICH D.
    • International Journal of Automotive Technology
    • /
    • 제6권1호
    • /
    • pp.37-44
    • /
    • 2005
  • The creation of automotive systems of active safety with intelligent functions needs the use of new control principles for the wheel and automobile. One of such directions is the pre-extreme control strategy. Its aim is the ensuring of wheel's work in pre-extreme, stable area of tire grip wheel slip dependence. The simplest realization of pre-extreme control in automotive anti-lock brake systems consists in the threshold and gradient algorithms. A comparative analysis of these algorithms, which has been made on 'hardware in-the-loop' simulation results of the braking for bus with various anti-lock brake systems (ABS), indicated their high efficiency.

ISO 26262 의 하드웨어 ASIL 정량적 평가 절차

  • 김기영;장중순
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.271-279
    • /
    • 2011
  • Automotive safety integrity level of hardware components can be achieved by satisfying quantitative and qualitative requirements. Based on ASIL, quantitative requirements are composed of hardware architectural metrics and evaluation of safety goal violations due to random hardware failures in ISO 26262. In this paper, the types of hardware failures will be defined and classified. Based on various metrics related with hardware failures, design essentials to achieve hardware safety integrity will be studied specifically. Issues associated with hardware development and assessment process are presented briefly.

  • PDF

기능 안전성을 위한 대칭형 각도센서 보상기에 기반한 안전한 적응형 전조등 제어기의 설계 (Safe Adaptive Headlight Controller with Symmetric Angle Sensor Compensator for Functional Safety Requirement)

  • 윤지애;인멍디;안중현;조정훈;박대진
    • 대한임베디드공학회논문지
    • /
    • 제10권5호
    • /
    • pp.297-305
    • /
    • 2015
  • AFLS (Adaptive front lighting System) is being applied to improve safety in driving automotive at night. Safe embedded system for controlling head-lamp has to be tightly designed by considering safety requirement of hardware-dependent software, which is embedded in automotive ECU(Electronic Control Unit) hardware under severe environmental noise. In this paper, we propose an adaptive headlight controller with newly-designed symmetric angle sensor compensator, which is integrated with ECU-based adaptive front light system. The proposed system, on which additional backup hardware and emergency control algorithm are integrated, effectively detects abnormal situation and restore safe status of controlling the light-angle in AFLS operations by comparing result in symmetric angle sensor. The controlled angle value is traced into internal memory in runtime and will be continuously compared with the pre-defined lookup table (LUT) with symmetric angle value, which is used in normal operation. The watch-dog concept, which is based on using angle sensor and control-value tracer, enables quick response to restore safe light-controlling state by performing the backup sequence in emergency situation.

Development of ISO 26262 based Requirements Analysis and Verification Method for Efficient Development of Vehicle Software

  • Kyoung Lak Choi;Min Joong Kim;Young Min Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.219-230
    • /
    • 2023
  • With the development of autonomous driving technology, as the use of software in vehicles increases, the complexity of the system increases and the difficulty of development increases. Developments that meet ISO 26262 must be carried out to reduce the malfunctions that may occur in vehicles where the system is becoming more complex. ISO 26262 for the functional safety of the vehicle industry proposes to consider functional safety from the design stage to all stages of development. Specifically at the software level, the requirements to be complied with during development and the requirements to be complied with during verification are defined. However, it is not clearly expressed about specific design methods or development methods, and it is necessary to supplement development guidelines. The importance of analysis and verification of requirements is increasing due to the development of technology and the increase of system complexity. The vehicle industry must carry out developments that meet functional safety requirements while carrying out various development activities. We propose a process that reflects the perspective of system engineering to meet the smooth application and developmentrequirements of ISO 26262. In addition, the safety analysis/verification FMEA processforthe safety of the proposed ISO 26262 function was conducted based on the FCAS (Forward Collision Avoidance Assist System) function applied to autonomous vehicles and the results were confirmed. In addition, the safety analysis/verification FMEA process for the safety of the proposed ISO 26262 function was conducted based on the FCAS (Forward Collision Avoidance Assist System) function applied to the advanced driver assistance system and the results were confirmed.

자동차 기능안전 표준을 반영하는 개선된 FTA 및 위험원 분석 기법 (An Improved Method of FTA and Associated Risk Analysis Reflecting Automotive Functional Safety Standard)

  • 정호전;이재천
    • 한국산학기술학회논문지
    • /
    • 제18권9호
    • /
    • pp.9-17
    • /
    • 2017
  • 자동차 및 철도 등 수송 시스템에서 무인화 운전으로의 진전으로 인해 시스템 운영 시 안전성의 확보는 필수불가결한 요소로 간주되어 왔다. 자동차 안전설계를 뒷받침하기 위해 제정된 기능안전 표준인 ISO 26262에서는 위험원 분석 및 평가 그리고 안전 설계를 수행할 때 시스템 설계 정보를 적절하게 반영함으로써 안전성이 확보되는 자동차 시스템을 구현하기 위한 절차가 제시되어 있다. 이에 따라 위험원 분석에 관해 많은 연구가 이루어졌는데, 주로 이미 운영되고 있는 유사 시스템 사례에 의존하여 설계 정보를 활용하였다. 먼저 물리 구성품 수준에서 설계정보를 추출하고, 이로부터 기능 들을 역추적 한 후에 위험원을 식별하는 방법이 연구되었다. 이러한 방법은 빠르고 쉽게 위험원의 식별이 가능하기는 하지만, 설계 요구사항이 변경되거나 새로운 시스템을 설계할 때에는 설계 정보를 제대로 반영할 수 없어 일부 위험원이 누락될 수 있는 가능성이 있다. 이러한 점을 해결하기 위해서 본 논문에서는 기능안전표준에서 제시하는 안전수명주기 모델의 위험원 분석 단계에서 효과적인 방법을 연구하였다. 구체적으로 시스템 개념 설계를 Top-Down 방식으로 수행하면서 확보한 설계 정보를 위험원 분석에 적절하게 활용하는 방법을 제안하였다. 먼저 시스템 개념 설계를 수행하고, 획득된 기능 설계 결과를 분석하였다. 그러고 나서 기능 분석 결과를 활용하는 기능기반 Fault Tree Analysis 방법을 제시하고 위험원 분석을 수행하였다. 또한 자동차 시스템에서의 안전 설계 사례 연구를 통하여 본 논문에서 제시하는 방법이 대상 시스템의 설계 정보가 체계적으로 반영되어 누락 가능성이 줄어든 위험원 분석이 가능함을 보여 주었다.

자동차 전자식 주차 브레이크 시스템 안전 요구사항 검증을 위한 모델검증 적용 (Using Model Checking to Verify an Automotive Electric Parking Brake System)

  • 최준열;조준형;최윤자
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권4호
    • /
    • pp.167-176
    • /
    • 2017
  • 자동차 산업이 급격히 발달하면서 각종 인명손실을 예방하기 위한 정책 및 안전장치가 늘어나고 있다. 트렌드의 일환으로 2011년에 차량의 전기전자시스템의 기능안전성을 확보하기 위한 ISO26262 $1^{st}$ edition이 릴리즈 되었으며, 2016년 하반기에 $2^{nd}$ edition이 릴리즈 될 예정이다. ISO 26262에서는 안전 요구사항에 대해 Walk through, 인스펙션, 준정형 검증, 정형 검증을 통해 전기전자시스템 요구사항에 대한 검증을 요구하고 있다. 본 논문에서는 ASIL (Automotive Safety Integrity Level) D등급의 전자식 주차 브레이크 양산 프로젝트의 전기전자시스템 요구사항 검증에 모델검증을 적용함으로써 전기전자시스템 요구사항 검증 시 모델검증의 효율성을 기술한다.

ISO 26262 표준 기반의 소프트웨어 검증을 위한 소프트웨어 결함 주입 기법 (Software Fault Injection Test Methodology for the Software Verification of ISO 26262 Standards-based)

  • 이상호;신승환
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.68-74
    • /
    • 2014
  • As the number of ECUs (Electronic control units) are increasing, reliability and functional stability of a software in an ECU is getting more important. Therefore the application of functional safety standards ISO 26262 is making the software more reliable. Software fault injection test (SFIT) is required as a verification technique for the application of ISO 26262. In case of applying SFIT, an artificial error is injected to inspect the vulnerability of the system which is not easily detected during normal operation. In this paper, the basic concept of SFIT will be examined and the application of SIFT based on ISO26262 will be described.

공리적 설계에 의한 안전기준을 만족하는 자동차용 시트 설계 (Design of Automobile Seat for Regulations using Axiomatic Design)

  • 강병수;정자영;신문균;박경진
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.24-34
    • /
    • 2005
  • The automobile seat must satisfy various safety regulations for the passenger's safety. In many design practices, each component is independently designed by concentrating on a single related regulation. However, since multiple regulations can be involved in a seat component, there may be design confliction among the various safety regulations. Therefore, a new design methodology is required to effectively design an automobile seat. The axiomatic approach is employed for considering multiple regulations. The Independence Axiom is used to define the overall flow of the seat design. Functional requirements (FRs) are defined by safety regulations and components of the seat are classified into groups which yield design Parameters (DPs). The classification is carried out to have independence in the FR-DP relationship. Components in a DP group are determined by using orthogonal away of the design of experiments (DOE). Numerical analyses are utilized to evaluate the safety levels by using a commercial software system for nonlinear transient finite element analysis.