• Title/Summary/Keyword: Automorphism

Search Result 161, Processing Time 0.019 seconds

AUTOMORPHISMS OF THE ZERO-DIVISOR GRAPH OVER 2 × 2 MATRICES

  • Ma, Xiaobin;Wang, Dengyin;Zhou, Jinming
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.519-532
    • /
    • 2016
  • The zero-divisor graph of a noncommutative ring R, denoted by ${\Gamma}(R)$, is a graph whose vertices are nonzero zero-divisors of R, and there is a directed edge from a vertex x to a distinct vertex y if and only if xy = 0. Let $R=M_2(F_q)$ be the $2{\times}2$ matrix ring over a finite field $F_q$. In this article, we investigate the automorphism group of ${\Gamma}(R)$.

A NOTE ON GENERALIZED LICHNEROWICZ-OBATA THEOREMS FOR RIEMANNIAN FOLIATIONS

  • Pak, Hong-Kyung;Park, Jeong-Hyeong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.769-777
    • /
    • 2011
  • It was obtained in [5] generalized Lichnerowicz and Obata theorems for Riemannian foliations, which reduce to the results on Riemannian manifolds for the point foliations. Recently in [3], they studied a generalized Obata theorem for Riemannian foliations admitting transversal conformal fields. Each transversal conformal field is a ${\lambda}$-automorphism with ${\lambda}=1-{\frac{2}{q}}$ in the sense of [8]. In the present paper, we extend certain results established in [3] and study Riemannian foliations admitting ${\lambda}$-automorphisms with ${\lambda}{\geq}1-{\frac{2}{q}}$.

GROUP ACTION FOR ENUMERATING MAPS ON SURFACES

  • Mao, Linfan;Liu, Yanpei
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.201-215
    • /
    • 2003
  • A map is a connected topological graph $\Gamma$ cellularly embedded in a surface. For any connected graph $\Gamma$, by introducing the concertion of semi-arc automorphism group Aut$\_$$\frac{1}{2}$/$\Gamma$ and classifying all embedding of $\Gamma$ undo. the action of this group, the numbers r$\^$O/ ($\Gamma$) and r$\^$N/($\Gamma$) of rooted maps on orientable and non-orientable surfaces with underlying graph $\Gamma$ are found. Many closed formulas without sum ∑ for the number of rooted maps on surfaces (orientable or non-orientable) with given underlying graphs, such as, complete graph K$\_$n/, complete bipartite graph K$\_$m, n/ bouquets B$\_$n/, dipole Dp$\_$n/ and generalized dipole (equation omitted) are refound in this paper.

THE CHARACTER TABLE OF THE GROUP $GL_2(Q)$WHEN EXTENDED BY A CERTAIN GROUP OF ORDER TWO

  • Darafsheh, M.R.;Larki, F.Nowroozi
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.875-886
    • /
    • 2000
  • Let G denote either of the groups $GL_2(q)$ or $SL_2(q)$. Then ${\theta}$:G -> G given by ${\theta}(A)$ = ${(A^t)}^{-l}$, where $A^t$ denotes the transpose of the matrix A, is an automorphism of G. Therefore we may form the group G.$<{\theta}>$ which is the split extension of the group G by the cyclic group $<{\theta}>$ of order 2. Our aim in this paper is to find the complex irreducible character table of G.$<{\theta}>$.

EXTENDED DIRECTED TRIPLE SYSTEMS WITH A GIVEN AUTOMORPHISM

  • Cho, Chung-Je;Han, Yong-Hyeon
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.355-373
    • /
    • 2004
  • An extended directed triple system of order v, denoted by EDTS(v), is a pair (V, (equation omitted)) where V is a v-set and (equation omitted) is a set of transitive triples of elements of V such that every ordered pair of elements of V is contained in exactly one member of (equation omitted). We obtain a necessary and sufficient condition for the existence of cyclic EDTS(v)s, and when k=1 or 2, we also obtain a necessary and sufficient condition for the existence of k-rotational EDTS(v)s.

NORMAL SYSTEMS OF COORDINATES ON MANIFOLDS OF CHERN-MOSER TYPE

  • Schmalz, Gerd;Spiro, Andrea
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.461-486
    • /
    • 2003
  • It is known that the CR geometries of Levi non-degen-erate hypersurfaces in $\C^n$ and of the elliptic or hyperbolic CR submanifolds of codimension two in $\C^4$ share many common features. In this paper, a special class of normalized coordinates is introduced for any CR manifold M which is one of the above three kinds and it is shown that the explicit expression in these coordinates of an isotropy automorphism $f{\in}Aut(M)_o {\subset}Aut(M),\;o{\in}M$, is equal to the expression of a corresponding element of the automorphism group of the homogeneous model. As an application of this property, an extension theorem for CR maps is obtained.

NOTES ON SYMMETRIC SKEW n-DERIVATION IN RINGS

  • Koc, Emine;Rehman, Nadeem ur
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1113-1121
    • /
    • 2018
  • Let R be a prime ring (or semiprime ring) with center Z(R), I a nonzero ideal of R, T an automorphism of $R,S:R^n{\rightarrow}R$ be a symmetric skew n-derivation associated with the automorphism T and ${\Delta}$ is the trace of S. In this paper, we shall prove that S($x_1,{\ldots},x_n$) = 0 for all $x_1,{\ldots},x_n{\in}R$ if any one of the following holds: i) ${\Delta}(x)=0$, ii) [${\Delta}(x),T(x)]=0$ for all $x{\in}I$. Moreover, we prove that if $[{\Delta}(x),T(x)]{\in}Z(R)$ for all $x{\in}I$, then R is a commutative ring.

THE JACOBSON RADICAL OF THE ENDOMORPHISM RING, THE JACOBSON RADICAL, AND THE SOCLE OF AN ENDO-FLAT MODULE

  • Bae, Soon-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.3
    • /
    • pp.453-467
    • /
    • 2000
  • For any S-flat module RM(which will be called endoflat) with a commutaitve ring R with identity, where S is the endomorphism ring RM, the fact that every epimorphism is an automorphism has been proved and the Jacobson Radical Rad(S) of S is described as follow; Rad(S) = { f$\in$S|Imf=Mf is small in M} = {f$\in$S|Imf $\leq$Rad(M)}. Additionally for any quasi-injective endo-flat module RM, the fact that every monomorphism is an automorphism has been proved and the Jacobson Radical Rad(S) for any quasi-injective endo-flat module has been studied too. Also some equivalent conditions for the semi-primitivity of any faithful endo-flat module RM with the open Jacobson Radical Rad(M) and those for the semi-simplicity of any faithful endo-flat quasi-injective module RM with the closed Socle Soc(M) have been studied.

  • PDF

CLASSIFICATION OF ORDER SIXTEEN NON-SYMPLECTIC AUTOMORPHISMS ON K3 SURFACES

  • Tabbaa, Dima Al;Sarti, Alessandra;Taki, Shingo
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1237-1260
    • /
    • 2016
  • In the paper we classify complex K3 surfaces with non-symplectic automorphism of order 16 in full generality. We show that the fixed locus contains only rational curves and points and we completely classify the seven possible configurations. If the Picard group has rank 6, there are two possibilities and if its rank is 14, there are five possibilities. In particular if the action of the automorphism is trivial on the Picard group, then we show that its rank is six.