• Title/Summary/Keyword: Automatic control

Search Result 3,663, Processing Time 0.032 seconds

Development of Clutch Auto Calibration Algorithm for Automatic Transmission Shift Quality Improvement (자동변속기 변속품질 향상을 위한 클러치 자동보정 알고리즘 개발)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.47-56
    • /
    • 2020
  • As a shift control of automatic transmission was managed with the electronic control unit (ECU), shift quality which is a measure of shift shock during gear change has markedly improved. However, the initial clutch pressure control of the clutch filling phase should continue to rely on the predetermined control input since the input and output speeds are unchanged until the shifting process attains the inertia phase. It is critical to minimize the clutch response time and control the clutch pressure accurately at the end of clutch fill to achieve quick shift response and smoothness. Advanced transmission companies have adopted an auto calibration method which establishes the databases for the clutch piston fill-up attributes and the frictional characteristics of the disks. In this study, a distinctive auto calibration algorithm for forklift transmission under development is proposed and verified with the real-vehicle test. The experimental calibration results showed consistent turbine dynamics at the initial stage of shifts with the properly calibrated clutch-fill control parameters. By using this technique, it is necessary to finalize the shift control for the various operation conditions.

A Study on a Nonlinear Control Algorithm for the Automatic Berthing of Ships (선박 자동 이접안을 위한 비선형 제어알고리즘 연구)

  • Won, Moon-Cheol;Hong, Seong-Kuk;Jung, Yun-Ha;Kim, Sun-Young;Son, Nam-Sun;Yoon, Hyun-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.34-40
    • /
    • 2008
  • his study discusses the design of an automatic berthing control algorithm for ships with a haw thruster and a stern thruster, as well as a rudder. A nonlinear mathematical model for the law speed maneuvering of ships was used to design a MIMO (multi-input multi-output) nonlinear control algorithm. The algorithm consists of two parts, the forward velocity control and heading angle control. The control algorithm was designed based on the longitudinal and yaw dynamic models of ships. The desired heading angle was obtained by the so-called "Line of Sight" method. An optimal control force allocation method forthe rudder and the thrusters is suggested. The nonlinear control algorithm was tested by numerical simulations using MATLAB, and showed good tracking performance.

An Upshift Improvement in the Quality of Forklift's Automatic Transmission by Learning Control (학습제어를 이용한 지게차 자동변속기 상향 변속품질 개선)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.19 no.2
    • /
    • pp.17-26
    • /
    • 2022
  • Recently, automatic transmissions caused a good improvement in the shift quality of a forklift. An advanced shift control algorithm, which was based on TCU firmware, was applied with embedded control technology and microcontrollers. In the clutch-to-clutch shifting, one friction element is released and the other friction element is activated. During this process, if the release and application timings are not synchronized, an overrun or tie-up occurs and ultimately leads to a shift shock. The TCU, which measures only the speed of the forklift, inevitably applies the open-loop shift control. In this situation, the speed ratio does not change during the clutch fill. The torque phase occurs until the clutch is disengaged. In this study, an offline shift logic of the learning control was proposed. It induced a synchronous shift when the learning control progressed. During this process, the reference current trajectory of the release clutch was corrected and applied to the next upshift. We considered the results of the overrun/tie-up characteristics of the upshift performed immediately before. The vehicle test proved that the deviation in shift quality, which was caused by the difference in the mechanical characteristics of the clutch, could be improved by the learning control.

Automatic Control of Horizontal-moving Stereoscopic Camera by Disparity Compensation

  • Kwon, Ki-Chul;Choi, Jae-Kwang;Kim, Nam;Young-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.150-155
    • /
    • 2002
  • Horizontally-moving method (HMM) stereoscopic camera has a liner relationship between ver-gence and focus control. We introduced the automatic control method for a stereoscopic camera system that uses the relationship between vergence and focus of an HMM stereoscopic camera. the Automatic control method uses disparity compensation of the acquired image pair from the stereoscopic camera. For faster extraction of disparity information, the proposed binocular dispar-ity estimation method by the one-dimensional cepstral filter algorithm would be investigated. The suggested system in this study substantially reduced the controlling time and error-ratio so as to make it possible to achieve natural and clear images.

PID auto-tuning controller design via fuzzy logic

  • He, Wei;Yu, Tian;Zhai, Yujia
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.4
    • /
    • pp.31-40
    • /
    • 2013
  • PID auto-tuning controller was designed via fuzzy logic. Typical values such as error and error derivative feedbackwere changed as heuristic expressions, and they determine PID gain through fuzzy logic and defuzzification process. Fuzzy procedure and PID controller design were considered separately, and they are combined and analyzed. Obtained auto-tuning PID controller by Fuzzy Logic showed the ability for less than 3rd order plant control.

Nonlinear Control Design for Reducing Shifting Torque in Automatic Transmission (자동변속기의 과도토크 저감을 위한 비선형 제어기설계)

  • Kim, D.H.;Lee, K.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.95-104
    • /
    • 1997
  • We consider controller design problem to enhance shift quality for automatic transmission. A dynamic modeling related to shifting (mainly 2-3 up-shift) is constructed and nonlinear robust controllers are designed to reduce output torque during shifting. Suggesting a new hydraulic circuit enabling the direct clutch drive, the control activity is extended and more implementable than the conventional design. The designed robust controllers overcome the unmodeled dynamics and the uncertainty embending in the system. Moreover, the dynamic effect between the clutch pressure and the PWM valve duty is considered via singular perturbation technique.

  • PDF

On Developing Intelligent Automatic Transmission System Using Soft Computing (Soft Computing을 이용한 지능형 자동 변속 시스템 개발)

  • 김성주;김창훈;김성현;연정흠;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.133-136
    • /
    • 2001
  • This paper partially presents a Hierachical neural network architecture for providing the intelligent control of complex Automatic Transmission(AJT) system which is usually nonlinear and hard to model mathematically. It consists of the module to apply or release an engine brake at the slope and that to judge the intention of the driver. The HNN architecture simplifies the structure of the overall system and is efficient for the learning time. This paper describes how the sub-neural networks of each module have been constructed and will compare the result of the intelligent hJT control to that of the conventional shift pattern.

  • PDF

Study of data flow control algorithm for automatic fault estimation in SCADA (SCADA 자동고장판단을 위한 데이터 흐름제어 알고리즘 연구)

  • Park, Jeong-Jin;Kim, Kern-Joong;Hwang, In-Jun;Yang, Min-Uk;Lee, Jae-Won;Cho, Hui-Chang;Kim, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.296-298
    • /
    • 2008
  • Currently SCADA System faces various fault situation. Operator must recognize all fault state and management plans. But it is not easy to recognize all category and acquired error data. So it is needed that automatic fault estimation. Automatic fault estimation is possible to data flow control. Data flow control method is two type. One is alarm processing and the other one is topology processing. This paper provide two type processing method in SCADA data flow control.

  • PDF

A study on robustness of automatic seam tracking system (용접선 자동추적장치의 강인성에 관한 연구)

  • 강희신;조택동;양상민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.775-778
    • /
    • 1996
  • In this research, the robustness of a seam tracking for the automatic welding system is studied. The laser displacement sensor is used as a seam finder. X-Y moving table drived by ac servo motor controls the position and velocity of the torch-and-sensor part. However, dc servo motor is used to control the position and velocity of the torch. The sensor locates ahead of torch to preview the weld line, and brings about the inaccuracy on the torch tracking. To enhance the robustness on this system against the influence of disturbances and model uncertainty, H$\_$.inf./ control is applied to the angular motion of torch. The simulation shows that the tracking accuracy improved significantly. Also, experimental results give a good performance of H$\_$.inf./ control strategy to the automatic seam tracking system for the welding.

  • PDF

Development of Multi-functional Control Module for $CO_2$ Welding to Improve Confidence (신뢰성 향상을 위한 $CO_2$ 용접용 다기능 제어모듈의 개발)

  • Kim, Dong-Wan;Park, Ji-Ho;Park, Sung-Won;Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.203-210
    • /
    • 2005
  • In this paper, a multi-functional control module is developed to improve the confidence of $CO_2$ welding. In the developed system, a main controller of an automatic welding system including I/O port is modulated by microprocessor. The developed multi-functional control module is familiarized to the conventional automatic welding system. Therefore, the confidence of $CO_2$ welding is improved when the main controller of an automatic welding system is broken down.