• 제목/요약/키워드: Automated ML

검색결과 60건 처리시간 0.023초

북극 해빙표면온도 산출을 위한 Automated Machine Learning과 Deep Neural Network의 적용성 평가 (Applicability Evaluation of Automated Machine Learning and Deep Neural Networks for Arctic Sea Ice Surface Temperature Estimation)

  • 박성우;성노훈;심수영;정대성;우종호;김나연;김홍희;한경수
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1491-1495
    • /
    • 2023
  • 본 연구는 북극의 해빙표면온도(ice surface temperature, IST)를 자동화된 기계 학습(automated machine learning, AutoML) 기반으로 산출하였다. AutoML 기반 IST는 상관관계(correlation coefficient, R) 0.97, 평균 제곱근 오차(root mean squared error, RMSE) 2.51K로 산출되었다. 심층신경망(deep neural network, DNN) 모델과 비교하여 AutoML IST는 Moderate Resolution Imaging Spectroradiometer (MODIS) IST 및 ice mass balance (IMB) buoy IST와의 검증 결과에서 좋은 정확도를 보인다. 이는 어려운 극지방 조건에서 IST 추정 정확도를 향상시키는 AutoML의 효과를 강조한다.

Modeling of AutoML using Colored Petri Net

  • Yo-Seob, Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.420-426
    • /
    • 2022
  • Developing a machine learning model and putting it into production goes through a number of steps. Automated Machine Learning(AutoML) appeared to increase productivity and efficiency by automating inefficient tasks that occur while repeating this process whenever machine learning is applied. The high degree of automation of AutoML models allows non-experts to use machine learning models and techniques without the need to become machine learning experts. Automating the process of applying machine learning end-to-end with AutoML models has the added benefit of creating simpler solutions, generating these solutions faster, and often generating models that outperform hand-designed models. In this paper, the AutoML data is collected and AutoML's Color Petri net model is created and analyzed based on it.

Comparing automated and non-automated machine learning for autism spectrum disorders classification using facial images

  • Elshoky, Basma Ramdan Gamal;Younis, Eman M.G.;Ali, Abdelmgeid Amin;Ibrahim, Osman Ali Sadek
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.613-623
    • /
    • 2022
  • Autism spectrum disorder (ASD) is a developmental disorder associated with cognitive and neurobehavioral disorders. It affects the person's behavior and performance. Autism affects verbal and non-verbal communication in social interactions. Early screening and diagnosis of ASD are essential and helpful for early educational planning and treatment, the provision of family support, and for providing appropriate medical support for the child on time. Thus, developing automated methods for diagnosing ASD is becoming an essential need. Herein, we investigate using various machine learning methods to build predictive models for diagnosing ASD in children using facial images. To achieve this, we used an autistic children dataset containing 2936 facial images of children with autism and typical children. In application, we used classical machine learning methods, such as support vector machine and random forest. In addition to using deep-learning methods, we used a state-of-the-art method, that is, automated machine learning (AutoML). We compared the results obtained from the existing techniques. Consequently, we obtained that AutoML achieved the highest performance of approximately 96% accuracy via the Hyperpot and tree-based pipeline optimization tool optimization. Furthermore, AutoML methods enabled us to easily find the best parameter settings without any human efforts for feature engineering.

Azure 클라우드 플랫폼의 가상서버 호스팅을 이용한 데이터 수집환경 및 분석에 관한 연구 (A study on data collection environment and analysis using virtual server hosting of Azure cloud platform)

  • 이재규;조인표;이상엽
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.329-330
    • /
    • 2020
  • 본 논문에서는 Azure 클라우드 플랫폼의 가상서버 호스팅을 이용해 데이터 수집 환경을 구축하고, Azure에서 제공하는 자동화된 기계학습(Automated Machine Learning, AutoML)을 기반으로 데이터 분석 방법에 관한 연구를 수행했다. 가상 서버 호스팅 환경에 LAMP(Linux, Apache, MySQL, PHP)를 설치하여 데이터 수집환경을 구축했으며, 수집된 데이터를 Azure AutoML에 적용하여 자동화된 기계학습을 수행했다. Azure AutoML은 소모적이고 반복적인 기계학습 모델 개발을 자동화하는 프로세스로써 기계학습 솔루션 구현하는데 시간과 자원(Resource)를 절약할 수 있다. 특히, AutoML은 수집된 데이터를 분류와 회귀 및 예측하는데 있어서 학습점수(Training Score)를 기반으로 보유한 데이터에 가장 적합한 기계학습 모델의 순위를 제공한다. 이는 데이터 분석에 필요한 기계학습 모델을 개발하는데 있어서 개발 초기 단계부터 코드를 설계하지 않아도 되며, 전체 기계학습 시스템을 개발 및 구현하기 전에 모델의 구성과 시스템을 설계해볼 수 있기 때문에 매우 효율적으로 활용될 수 있다. 본 논문에서는 NPU(Neural Processing Unit) 학습에 필요한 데이터 수집 환경에 관한 연구를 수행했으며, Azure AutoML을 기반으로 데이터 분류와 회귀 등 가장 효율적인 알고리즘 선정에 관한 연구를 수행했다.

  • PDF

한국 영화의 산업의 흥행 극대화를 위한 AutoML 기반의 박스오피스 유형 분류 및 예측 모델 (A Box Office Type Classification and Prediction Model Based on Automated Machine Learning for Maximizing the Commercial Success of the Korean Film Industry)

  • 임수빈;문지훈;노승민
    • Journal of Platform Technology
    • /
    • 제11권3호
    • /
    • pp.45-55
    • /
    • 2023
  • 본 논문은 한국 영화 산업의 의사 결정자들이 온라인상에서의 영화의 흥행을 극대화할 수 있도록 지원하는 데 도움을 주고자 역대 박스오피스 영화를 수집하여 영화를 유형별로 군집화하고, 유형별 온라인 박스오피스를 예측하는 모델을 제시한다. 이를 위해 먼저 다양한 특성을 고려하여 영화의 흥행 요인을 식별하고, 계산 효율성을 고려하여 특성 차원을 줄인다. 다음으로 영화의 유형을 체계적으로 분류하고, 유형별 온라인 박스오피스를 예측하며 흥행에 이바지한 요소를 분석한다. 이때, AutoML (Automated Machine Learning) 기법을 활용함으로써 다양한 기계학습 알고리즘을 자동으로 구성하고, 문제에 최적화된 알고리즘을 선택함으로써 여러 알고리즘을 쉽게 시도 및 선택한다. 이를 통해 정보화된 판단을 내릴 수 있는 기반을 제공하고, 영화 산업의 더 나은 성과를 도모하는 데 이바지할 것으로 기대할 수 있다.

  • PDF

Prediction of medication-related osteonecrosis of the jaw (MRONJ) using automated machine learning in patients with osteoporosis associated with dental extraction and implantation: a retrospective study

  • Da Woon Kwack;Sung Min Park
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제49권3호
    • /
    • pp.135-141
    • /
    • 2023
  • Objectives: This study aimed to develop and validate machine learning (ML) models using H2O-AutoML, an automated ML program, for predicting medication-related osteonecrosis of the jaw (MRONJ) in patients with osteoporosis undergoing tooth extraction or implantation. Patients and Methods: We conducted a retrospective chart review of 340 patients who visited Dankook University Dental Hospital between January 2019 and June 2022 who met the following inclusion criteria: female, age ≥55 years, osteoporosis treated with antiresorptive therapy, and recent dental extraction or implantation. We considered medication administration and duration, demographics, and systemic factors (age and medical history). Local factors, such as surgical method, number of operated teeth, and operation area, were also included. Six algorithms were used to generate the MRONJ prediction model. Results: Gradient boosting demonstrated the best diagnostic accuracy, with an area under the receiver operating characteristic curve (AUC) of 0.8283. Validation with the test dataset yielded a stable AUC of 0.7526. Variable importance analysis identified duration of medication as the most important variable, followed by age, number of teeth operated, and operation site. Conclusion: ML models can help predict MRONJ occurrence in patients with osteoporosis undergoing tooth extraction or implantation based on questionnaire data acquired at the first visit.

트랜잭션 기반 머신러닝에서 특성 추출 자동화를 위한 딥러닝 응용 (A Deep Learning Application for Automated Feature Extraction in Transaction-based Machine Learning)

  • 우덕채;문현실;권순범;조윤호
    • 한국IT서비스학회지
    • /
    • 제18권2호
    • /
    • pp.143-159
    • /
    • 2019
  • Machine learning (ML) is a method of fitting given data to a mathematical model to derive insights or to predict. In the age of big data, where the amount of available data increases exponentially due to the development of information technology and smart devices, ML shows high prediction performance due to pattern detection without bias. The feature engineering that generates the features that can explain the problem to be solved in the ML process has a great influence on the performance and its importance is continuously emphasized. Despite this importance, however, it is still considered a difficult task as it requires a thorough understanding of the domain characteristics as well as an understanding of source data and the iterative procedure. Therefore, we propose methods to apply deep learning for solving the complexity and difficulty of feature extraction and improving the performance of ML model. Unlike other techniques, the most common reason for the superior performance of deep learning techniques in complex unstructured data processing is that it is possible to extract features from the source data itself. In order to apply these advantages to the business problems, we propose deep learning based methods that can automatically extract features from transaction data or directly predict and classify target variables. In particular, we applied techniques that show high performance in existing text processing based on the structural similarity between transaction data and text data. And we also verified the suitability of each method according to the characteristics of transaction data. Through our study, it is possible not only to search for the possibility of automated feature extraction but also to obtain a benchmark model that shows a certain level of performance before performing the feature extraction task by a human. In addition, it is expected that it will be able to provide guidelines for choosing a suitable deep learning model based on the business problem and the data characteristics.

리스테리아 식중독균 검출을 위한 광학식 바이오센서 개발 (Development of a Fiber-Optic Biosensor for the Detection of Listeria monocytogenes)

  • 김기영;최규홍
    • Journal of Biosystems Engineering
    • /
    • 제31권2호
    • /
    • pp.128-134
    • /
    • 2006
  • Frequent outbreaks of foodborne illness demand the need for rapid and sensitive methods for detection of these pathogens. Recent development of biosensor technology has a great potential to meet the need for rapid and sensitive pathogens detection from foods. An antibody-based fiber-optic biosensor and an automated reagents supply system to detect Listeria monocytogenes were developed. The biosensor for detection of Listeria monocytogenes in PBS and bacteria spiked food samples was evaluated. The automated reagents supply system eliminated cumbersome sample and detection antibody injection procedures that had been done manually. The biosensor could detect $10^4$ cfu/ml of Listeria monocytogenes in PBS. By using the fiber-optic biosensor, $2x10^8$ cfu/ml of Listeria monocytogenes in the food samples were detectable.

이동 단말을 위한 SyncML 기반 응용 관리 시스템의 설계 및 구현 (Design and Implementation of SyncML based Application Management System for Mobile Devices)

  • 박지은;김상욱
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권1호
    • /
    • pp.62-70
    • /
    • 2002
  • 본 논문의 목적은 웹에 게시되는 이동 단말 전용 소프트웨어 정보 검색 과정을 자동화하고, 해당 소프트웨어를 단말에 설치하는 과정을 자동화하여, 이를 한 단계로 통합하여 제공함으로써 단말 사용자들이 보다 쉽게 응용 소프트웨어를 이용할 수 있도록 하는 것이다. 이를 위하여 본 논문에서는 프로그램 자동 배포를 위한 권고안인 OSD(Open Software Description)를 따르는 웹 에이전트를 구현함으로써 웹 모니터링 및 소프트웨어 다운로딩 작업을 자동화하였다. 또한, 단말과 서버간의 데이타 동기화 권고안인 SyncML(Synchronization Markup Language)을 기반으로 서버와 단말간 소프트웨어 설치 작업을 자동화하였다. 표준 권고안을 이용한 소프트웨어 자동 관리 방법은 사용자의 개입을 최소화할 뿐 만 아니라, 기존의 다양한 이동 단말, 서로 다른 운영체제, 그리고 다양한 응용 소프트웨어 다운로딩 사이트에 범용적으로 적용할 수 있다는 장점을 제공한다.

자동 기계학습(AutoML) 기술 동향 (Recent Research & Development Trends in Automated Machine Learning)

  • 문용혁;신익희;이용주;민옥기
    • 전자통신동향분석
    • /
    • 제34권4호
    • /
    • pp.32-42
    • /
    • 2019
  • The performance of machine learning algorithms significantly depends on how a configuration of hyperparameters is identified and how a neural network architecture is designed. However, this requires expert knowledge of relevant task domains and a prohibitive computation time. To optimize these two processes using minimal effort, many studies have investigated automated machine learning in recent years. This paper reviews the conventional random, grid, and Bayesian methods for hyperparameter optimization (HPO) and addresses its recent approaches, which speeds up the identification of the best set of hyperparameters. We further investigate existing neural architecture search (NAS) techniques based on evolutionary algorithms, reinforcement learning, and gradient derivatives and analyze their theoretical characteristics and performance results. Moreover, future research directions and challenges in HPO and NAS are described.