Acknowledgement
Grant : 부하분산과 능동적 적시 대응을 위한 빅데이터 엣지 분석 기술 개발
Supported by : 정보통신기획평가원
References
- J. Bergstra, Y. Bengio, "Random search for hyper-parameter optimization," J. Mach. Learning Research, vol. 13, Feb. 2012, pp. 281-305.
- E. Brochu, V.M. Cora, N. de Freitas, "A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning," arXiv preprint arXiv:1012.2599, 2010.
- J. Sneok, H. Larochelle, R. P. Adams, "Practical Bayesian optimization of machine learning algorithms," in Proc. Adv. Neural Infor. Process. Syst. (NIPS), Lake Tahoe, NV, USA, Dec. 2012, pp. 2951-2959.
- L. Li et al., "Hyperband: A novel bandit-based approach to hyperparameter optimization," J. Mach. Learning Research, vol. 18, Apr. 2018, pp. 1-52.
- A. Klein et al., "Fast Bayesian optimization of machine learning hyperparameters on large datasets," in Proc. Artif. Intell. Statistics (AISTATS), Fort Lauderdale, FL, USA, Apr. 2017, pp. 528-536.
- K. Swersky, J Snoek, R.P. Adams, "Multi-task Bayesian optimization," in Proc. Adv. Neural Infor. Process. Syst. (NIPS), Lake Tahoe, NV, USA, Dec. 2013, pp. 2004-2012.
- P. Hennig, C.J. Schuler, "Entropy search for information-efficient global optimization," J. Mach. Learning Research, vol. 13, June 2012, pp. 1809-1837.
- H. Bertrand, R. Ardon, I. Bloch, "Hyperparameter optimization of deep neural networks: combining hyperband with Bayesian model selection," in Proc. Conf. sur l'Apprentissage Automatique, France, June 2017, pp. 1-5.
- S. Falkner, A Klein, F. Hutter, "BOHB: robust and efficient hyperparameter optimization at scale," in Proc. Int. Conf. Mach. Learning (ICML), Stockholm, Sweden, 2018, pp. 1436-1445.
- J. Bergstra et al., "Algorithms for hyper-parameter optimization," in Proc. Adv. Neural Infor. Process. Syst. (NIPS), Granada, Spain, Dec. 2011, pp. 2546-2554.
- K. Jamieson, A. Talwalkar, "Non-stochastic best arm identification and hyperparameter optimization," in Proc. Artif. Intell. Statistics (AISTATS), Cadiz, Spain, 2016, pp. 240-248.
- J. Lorraine, D. Duvenaud, "Stochastic Hyper- parameter Optimization through Hypernetworks," arXiv preprint arXiv:1802.09419, 2018.
- A. Brock et al., "SMASH: one-shot model architecture search through hypernetworks," in Proc. Int. Conf. Learning Representations (ICLR), Vancouver, Canada, 2018, pp. 1-22.
- K.O. Stanley, R. Miikkulainen, "Evolving neural networks through augmenting topologies," Evolutionary computat., vol. 10, no. 2, 2002, pp. 99-127. https://doi.org/10.1162/106365602320169811
- E. Real et al., "Regularized evolution for image classifier architecture search," in Proc. Association Adv. Artif. Intell. (AAAI), Honolulu, HI, USA, 2019, pp. 1-16.
- B. Zoph et al., "Learning transferable architectures for scalable image recognition," in Proc. IEEE CVF Conf. Comput. Vision Pattern Recog.(CVPR), Salt Lake City, UT, USA, June 2018, pp. 8697-8710.
- H. Liu et al., "Hierarchical representations for efficient architecture search," in Proc. Int. Conf. Learning Representations (ICLR), Vancouver, Canada, 2018, pp. 1-13.
- Y. Chen et al., "Joint Neural Architecture Search and Quantization," arXiv preprint arXiv:1811.09426, 2018.
- B. Zoph, Q.V. Le, "Neural architecture search with reinforcement learning," in Proc. Int. Conf. Learning Representations (ICLR), Toulon, France, Apr. 2017, pp. 1-16.
- M. Tan et al., "Mnasnet: Platform-aware neural architecture search for mobile," arXiv preprint arXiv:1807.11626, 2018.
- S. Mark et al., "MobileNetV2: Inverted Residuals and Linear Bottlenecks," in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, 2018, pp. 4510-4520.
- H. Pham et al., "Efficient neural architecture search via parameter sharing," in Proc. Int. Conf. Mach. Learning (ICML), Stockholm, Sweden, 2018, pp. 1-11.
- Saxena, Shreyas, Jakob Verbeek. "Convolutional neural fabrics," in Proc. Adv. Neural Infor. Process. Syst., Barcelona, Spain, 2016, pp. 4053-4061.
- K. Ahmed, L. Torresani, "Connectivity Learning in Multi-Branch Networks," arXiv preprint arXiv:1709.09582, 2017.
- R. Shin, C. Packer, D. Song, "Differential Neural Network Architecture Search," in Proc. Int. Conf. Learning Representations (ICLR), Vancouver, Canada, 2018, pp. 1-4.
- G. Bender et al., "Understanding and Simplifying One-Shot Architecture Search," in Proc. Int. Conf. Mach. Learning (ICML), Stockholm, Sweden, 2018, pp. 549-558.
- H. Liu, K. Simonyan, Y. Yang, "Darts: Differentiable Architecture Search," in Proc. Int. Conf. Learning Representations (ICLR), New Orleans, LA, USA, May 2019, pp. 1-13.
- H. Cai, L. Zhu, S. Han, "ProxylessNAS: direct neural architecture search on target task and hardware," in Proc. Int. Conf. Learning Representations (ICLR), New Orleans, LA, USA, May 2019, pp. 1-13.
- A. Gordon et al., "Morphnet: Fast & simple resource-constrained structure learning of deep networks," in Proc. IEEE Conf. Comput. Vision Pattern Recog. (CVPR), Salt Lake City, UT, USA, June 2018, pp. 1586-1595.
- A. Wong, "NetScore: towards universal metrics for large-scale performance analysis of deep neural networks for practical on-device edge usage," arXiv preprint arXiv:1806.05512, 2018.