• Title/Summary/Keyword: Auto-Navigation

Search Result 89, Processing Time 0.029 seconds

A Study on the Longitudinal and Lateral Errors of Air Vehicle Heading for Auto-landing

  • Park, Ji Hee;Park, Hong Sick;Shin, Chul Su;Jo, Young-Wo;Shin, Dong-Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.2
    • /
    • pp.115-121
    • /
    • 2013
  • For the auto-landing operation of an air vehicle, the possibility of auto-landing operation should be first evaluated by testing the navigation performance through a flight test. In general, navigation performance is tested by analyzing north/east/down (NED) errors relative to reference equipment whose precision is about 8~10 times higher than that of a navigation system. However, to evaluate the auto-landing operation of an air vehicle, whether the air vehicle approaches a glide path aligned with the runway, within a specific error, needs to be examined rather than examining the north/east errors of the navigation system. Therefore, the longitudinal/lateral errors of air vehicle heading need to be analyzed. In this study, a method for analyzing the longitudinal/lateral errors of a navigation system was proposed as the navigation performance test method for evaluating the safety during the auto-landing of an air vehicle. Also, flight tests were performed six times, and the safety of auto-landing was examined by analyzing the performance using the proposed method.

Correction-Dead Reckoning using Map Matching Information in an Underground Parking Lot

  • Myung Hwan Seo;Jeeseon Kim;Sojin Park;Dongkwon Suh
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.391-398
    • /
    • 2023
  • In this paper, we propose a Correction Dead Reckoning (CDR) solution using correction information such as Map Matching FeedBack (MMFB) in an underground parking lot. In order to correct position errors in an underground parking lot, vehicle position and heading errors are corrected using MMFB information in road link properties. The proposed method was applied to an in-vehicle navigation system and tested. The experimental results show that the proposed robust dead reckoning solution corrects Dead Reckoning (DR) position errors that occur when driving for a long time in an underground parking lot.

A Study on the Dynamic Characteristics of AGV driving device (Auto Guide Vehicle) (AGV 구동부의 동특성 해석)

  • 허형석;서용권
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.235-239
    • /
    • 2002
  • In this study, a AGV(Auto Guide Vehicle) is presented and the dynamic characteristics of AGV driving device is investigated. The design factors of hydraulic pump and motor is an important component for it's performance characteristics. the dynamic characteristics of hydraulic pump and motor is simulated by using commercial code AMESim. Simulation results show that each behavior can be predicted with changing the various parameters.

  • PDF

The Conceptual Design of Auto Releasing Emergency Wreck Marking Buoys (자동이탈식 비상침선표지 개발을 위한 개념설계 연구)

  • Gug, Seung-Gi;Park, Hye-Ri
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.417-422
    • /
    • 2016
  • Aids to Navigation (AtoN) are marine traffic facilities to improve the safety and efficiency of shipping. "New Dangers" should be appropriately marked using lateral, cardinal or isolated danger marks or by using an Emergency Wreck Marking Buoy. However, Emergency Wreck Marking Buoys are difficult to implement in terms of speed and accuracy of installation. In the case of sinking accidents, it is often difficult to immediately install an Emergency Wreck Marking Buoy because of weather conditions, the marine environment or accident positioning. This study concerns Auto-Releasing Emergency Wreck Marking Buoys, which should be installed in all vessel for safe marine navigation and efficient maritime transport with reference to the Maritime Buoyage System (MBS). Auto-Releasing Emergency Wreck Marking Buoys include an auto-release unit, auto reel chain and auto lighting lantern. These buoys can be automatically released from the deck of a vessel and will float in the water for quick installation at the scene of an accident, even in the case of sinking accidents. Auto-Releasing New Mark Buoys are expected to reduce to installation process, prevent secondary accidents by the risk of navigation and be search and rescue rapidly.

Research of Fuzzy Auto gain tuning control to apply actuator controller of Unmaned Aerial Vehicle (무인항공기 작동기 컨트롤러를 위한 퍼지 자동 이득 조정 PID 제어 연구)

  • Kim, Tae-Wan;Baek, Jin-Wook;Lee, Hyeong-Cheol
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.813-819
    • /
    • 2009
  • Designing actuator controllers of aircraft, which control aileron, flap, elevator and so on, is quiet difficult, because they have time variant nonlinear mechanical structures and also have many kinds of disturbances which are not been able to model easily. This paper reports about the performance of Fuzzy Auto gain tuning Control algorithm applied unmaned aerial vehicle. Fuzzy Auto gain tuning PID control uses PID control and Fuzzy control, therefore It can be applied very easily and it also has advances of PID control. It can control a unmaned aerial vehicle actuators adaptively even though the designer does not have enough information of plant.

  • PDF

Study on the Development of Auto Releasing New Danger Mark Buoy (자동이탈식 위험표시부표 개발에 관한 연구)

  • Gug, Seung-Gi;Park, Hye-Ri
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.20-21
    • /
    • 2016
  • Aids to Navigation (AtoN) is marine traffic safety facility to facilitate the safe and efficient movement of shipping and enhance the protection of the marine environment by the regulation or guideline of The International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA). By IALA NAVGUIDE, the term "New Danger" is defined as newly discovered hazards not yet shown in nautical documents and includes naturally occurring obstructions such as sandbanks or rocks or man-made dangers such as wrecks. 'New Dangers' should be appropriately marked using Lateral, Cardinal, Isolated Danger marks or by using the Emergency Wreck Marking Buoy. However, the Emergency Wreck Marking Buoy has difficulties with implementation conditions in terms of speed and accuracy to install the buoy. In case of sinking accidents, it is difficult immediately to install the Emergency Wreck Marking Buoy because of weather conditions, marine environments and accident position. This paper studies Auto Releasing New Danger Mark Buoy on the deck which can be automatically to release from the deck of a vessel and float in the water and quickly install the accident position in case of sinking accidents. The buoy will be to reduce the risk of navigation and prevent secondary collisions.

  • PDF

GNSS Signal Design Trade-off Between Data Bit Duration and Spreading Code Period for High Sensitivity in Signal Detection

  • Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.87-94
    • /
    • 2017
  • GNSS modernization and development is in progress throughout the globe, and it is focused on the addition of a new navigation signal. Accordingly, for the next-generation GNSS signals that have been developed or are under development, various combinations that are different from the existing GNSS signal structures can be introduced. In this regard, to design an advanced signal, it is essential to clearly understand the effects of the signal structure and design variables. In the present study, the effects of the GNSS spreading code period and GNSS data bit duration (i.e., signal design variables) on the signal processing performance were analyzed when the data bit transition was considered, based on selected GNSS signal design scenarios. In addition, a method of utilizing the obtained result for the design of a new GNSS signal was investigated.

Automatic Berthing Finite-time Control Considering Transmission Load Reduction

  • Liu Yang;Im Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.168-169
    • /
    • 2022
  • In this study, we investigates the auto-berthing problem for the underactuated surface vessel in the presence of constraints of dynamic uncertainties, finite time, transmission load, and environmental disturbance. A novel control scheme is proposed by fusing the finite time control technology and the event-triggered input algorithm. In the algorithm, differential homeomorphism coordinate the transformation is used to solve the problem of underactuation. Then, we apply the finite time technology and event triggered to save the time of the berthing vessel and relieve transmission burden between the controller and the vessel respectively. Moreover, a radial basis function network is used to approximate unknown nonlinear functions, and minimum learning parameters are introduced to lessen the computational complexity. A sufficient effort has been made to verify the stability of the closed-loop system based on the Lyapunov stability theory. Finally, simulation results display the effectiveness of the proposed scheme.

  • PDF

Periodic Bias Compensation Algorithm for Inertial Navigation System

  • Kim, Hwan-Seong;Nguyen, Duy-Anh;Kim, Heon-Hui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.45-53
    • /
    • 2004
  • In this paper, an INS compensation algorithm for auto sailing system is proposed, where low cost IMU (Inertial Measurement Unit) is used for measuring the accelerometer data. First, we denote the basic INS algorithm with IMU and show that how to compensate the error of position by using low cost IMU. Second, in considering the ship's characteristic and ocean environments, we consider with a factor as a periodic external disturbance which effects to the exact position. To develop the compensation algorithm, we use a repetitive method to reduce the external environment changes. Lastly, we verify the proposed algorithm by using experiments results.

  • PDF