• Title/Summary/Keyword: Auto Tuning

Search Result 248, Processing Time 0.027 seconds

Speed Control of Induction Motor Using Self-Learning Fuzzy Controller (자기학습형 퍼지제어기를 이용한 유도전동기의 속도제어)

  • 박영민;김덕헌;김연충;김재문;원충연
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.173-183
    • /
    • 1998
  • In this paper, an auto-tuning method for fuzzy controller's membership functions based on the neural network is presented. The neural network emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and the reformed fuzzy controller uses for speed control of induction motor. Thus, in the case of motor parameter variation, the proposed method is superior to a conventional method in the respect of operation time and system performance. 32bit micro-processor DSP(TMS320C31) is used to achieve the high speed calculation of the space voltage vector PWM and to build the self-learning fuzzy control algorithm. Through computer simulation and experimental results, it is confirmed that the proposed method can provide more improved control performance than that PI controller and conventional fuzzy controller.

  • PDF

Hybrid Fuzzy Controller Using GAs Based on Control Parameters Estimation mode (제어파라미터 추정모드기반 GA를 이용한 HFC)

  • Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.700-702
    • /
    • 2000
  • The new design methodology of a hybrid fuzzy controller by means of the genetic algorithms is presented. In fuzzy controller which has been widely applied and used. in order to construct the best fuzzy rules that include adjustment of fuzzy sets, a highly skilled techniques using trial and error are required. To deal with such a problem, first, a hybrid fuzzy controller(HFC) related to the optimal estimation of control parameters is proposed. The HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance than any other controller from each control output in steady state and transient state. Second, a auto-tuning algorithms is presented to automatically improve the performance of hybrid fuzzy controller, utilizing the simplified reasoning method and genetic algorithms. In addition, to obtain scaling factors and PID Parameters of HFC using GA, three kinds of estimation modes such as basic, contraction, and expansion mode are effectively utilized. The HFCs are applied to the first-order second-order process with time-delay and DC motor Computer simulations are conducted at step input and the performances of systems are evaluated and also discussed from performance indices.

  • PDF

Robust Controls of a Galvanometer : A Feasibility Study

  • Park, Myoung-Soo;Kim, Young-Chol;Lee, Jae-Won
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.94-98
    • /
    • 1999
  • Optical scanning systems use glavanometers to point the laser beam to the desired position on the workpiece. The angular speed of a galvanometer is typically controlled using Proportional+Integral+Derivative(PID) control algorithms. However, natural variations in the dynamics of different galvanometers due to manufacturing, aging, and environmental factors(i.e., process uncertainty) impose a hard limit on the bandwidth of the galvanometer control system. In general, the control bandwidth translates directly into efficiency of the system response. Since the optical scanning system must have rapid response, the higher control bandwidth is required. Auto-tuning PID algorithms have been accepted in this area since they could overcome some of the problems related to process uncertainty. However, when the galvanometer is attached to a larger mechanical system, the combined dynamics often exhibit resonances. It is well understood that PId algorithms may not have the capacity to increase the control bandwidth in the face of such resonances. This paper compares the achieable performance and robustness of a galvanometer control system using a PID controller tuned by the Ziegler-Nichols method and a controller designed by the Quantitative Feedback Theory(QFT) method. The results clearly indicate that-in contrast to PID designs-QFT can deliver a single, fixed controller which will supply high bandwidth design even when the dynamics is uncertain and includes mechanical resonances.

  • PDF

The Control of 3-Phase Induction Motor by Hybrid Fuzzy-PID Controller : Auto-Tuning of Parameters using Genetic Algorithms (하이브리드 퍼지-PID 제어기에 의한 3상 유도 전동기의 속도제어 : 유전자 알고리즘에 의한 파라미터의 자동 동조)

  • Kwon, Yang-Won;Ahn, Tae-Chon;Kang, Hak-Su;Yoon, Yang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.794-796
    • /
    • 1999
  • 본 논문에서는 3상 유도전동기의 속도를 제어하는데 기존 제어기의 문제점을 해결하고 최적화하기 위해서 유전자 알고리즘을 이용한 하이브리드 퍼지 -PID(HFPID) 제어기를 고안하고, 이에 대한 파라미터 설정 방법을 제안한다. 유도전동기의 제어는 지연시간이 길고, 비선형성이 강하며, 부하변동이 잦은 프로세스이기 때문에, 기존의 제어방식으로는 만족할만한 결과를 얻을 수 없다. 제안한 하이브리드 퍼지-PID 제어기는 PID 제어기의 장점인 과도기의 우수성과 퍼지 제어기의 장점인 정상기의 우수성을 퍼지 변수로 결합시켜 설계한다. 이 제어기에 유전자 알고리즘을 적용하여 최적의 퍼지 및 PID 파라미터를 설정하다. 그리고 이 제어기를 3상 유도전동기의 속도 제어에 응용한다. 또한 속도오차에 대한 룩업 표를 만들어 온라인 실시간 제어를 가능하게 한다. 이상의 과정을 3상 유도전동기에서 컴퓨터 시뮬레이션 하였다. 시뮬레이션 결과를 비교해 볼 때, 하이브리드 퍼지-PID 제어기는 기존의 제어기 보다 전동기의 속도 및 토크성분 전류 둥의 특성에서 우수한 성능을 보였다.

  • PDF

A Class-C Type Wideband Current-Reused VCO With Two-Step Automatic Amplitude Calibration Loop

  • Choi, Jin-Wook;Choi, Seung-Won;Kim, InSeong;Lee, DongSoo;Park, HyungGu;Pu, YoungGun;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.470-475
    • /
    • 2015
  • This paper presents a wideband Current-Reused Voltage Controlled Oscillator (VCO) with 2-Step Automatic Amplitude Calibration (AAC). Tuning range of the proposed VCO is from 1.95 GHz to 3.15 GHz. The mismatch of differential voltage is within 0.6 %. At 2.423 GHz, the phase noise is -116.3 dBc/Hz at the 1 MHz offset frequency with the current consumption of 2.6 mA. The VCO is implemented $0.13{\mu}m$ CMOS technology. The layout size is $720{\times}580{\mu}m^2$.

Anti-Sway Position Control of an Automated Transfer Crane Based on Neural Network Predictive PID Controller

  • Suh Jin-Ho;Lee Jin-Woo;Lee Young-Jin;Lee Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.505-519
    • /
    • 2005
  • In this paper, we develop an anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2 DOF PID controller. The simulation and experimental results show that the proposed control scheme guarantees performances, trolley position, sway angle and settling time in NNP PID controller than other controller. As the results in this paper, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard. Accordingly, the proposed algorithm in this study can be readily used for industrial applications.

Auto - tuning of PID Controllers with IMC Structure (IMC 구조를 갖는 PID 제어기의 자동 동조)

  • Cho, Joon-Ho;Hwang, Hyung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.8-14
    • /
    • 2009
  • In this paper, it is proposed that the design of the PID controller with the internal model control structure for improved performance. Internal model was identification that is second-order plus dead time structure using final-value theorem and genetic algorithm The parameters of Controller are determined to minimize IAE(Integral of the Absolute value of the Error) and ITAE(Integral of the Time multiplied by the Absolute value of the Error) of performance index by internal model and numerical method. Simulation examples are given to show the better performance of the proposed method than conventional methods.

A Study on the High Performance Speed Control of Induction Motor Using Self-Learning Fuzzy Controller (자기학습형 퍼지제어기에 의한 유도전동기 고성능 속도제어에 관한 연구)

  • Park, Y.M.;Kim, Y.C.;Kim, J.M.;Won, C.Y.;Kim, Y.R.;Kim, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.505-508
    • /
    • 1997
  • In this paper, an auto-tuning method for fuzzy controller based on the neural network is presented. The backpropagated error of neural emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and used for speed control of induction motor. For the torque control method, an indirect vector control scheme with slip calculation is used because of its stable characteristics regardless of speed. Motor input current is regulated by a current controlled voltage source PWM inverter using space voltage vector technique. Also, the scheme of current control fuzzy controller is synchronous reference frame with decoupling term. DSP(TMS320C31) is used to achieve the high speed calculation of the space voltage vector PWM and to build the self-learning fuzz. control algorithm. An IPM is used to simplify hardware design.

  • PDF

Automatic generation of Fuzzy Parameters Using Genetic and gradient Optimization Techniques (유전과 기울기 최적화기법을 이용한 퍼지 파라메터의 자동 생성)

  • Ryoo, Dong-Wan;La, Kyung-Taek;Chun, Soon-Yong;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.515-518
    • /
    • 1998
  • This paper proposes a new hybrid algorithm for auto-tuning fuzzy controllers improving the performance. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controllers, using a genetic-MGM algorithm. The object of the proposed algorithm is to promote search efficiency by a genetic and modified gradient optimization techniques. The proposed genetic and MGM algorithm is based on both the standard genetic algorithm and a gradient method. If a maximum point don't be changed around an optimal value at the end of performance during given generation, the genetic-MGM algorithm searches for an optimal value using the initial value which has maximum point by converting the genetic algorithms into the MGM(Modified Gradient Method) algorithms that reduced the number of variables. Using this algorithm is not only that the computing time is faster than genetic algorithm as reducing the number of variables, but also that can overcome the disadvantage of genetic algorithms. Simulation results verify the validity of the presented method.

  • PDF

Auto-tuning of PID controller using Neural Networks and Model Reference Adaptive control (신경망을 이용한 PID 제어기의 자동동조 및 기준모델 적응제어)

  • Kim, S.T.;Kim, J.S.;Seo, Y.O.;Park, S.J.;Hong, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2299-2301
    • /
    • 2000
  • In this paper, the design of PID controller using Neural networks for the control of non-linear system is presented. First, non-linear system is identified using BPN(Backpropagation Network) algorithm. This identified model is connected to the PID controller and the parameters of PID controller are updated to the direction of reducing the difference between the identified model output and model reference output in arbitrary input signal. Therefore, identified model output tracks the model reference output in an acceptable error range and the parameters of controller are updated adaptively. The output of the system has a good performance in case of both noisy and noiseless model reference and we can control the system stable in off-line when the dynamics of the system is changed.

  • PDF