NiO 스핀밸브 박막을 제작하고 이를 공기중에서 80 일간 자연산화시킨후, 형성된 산화층에 의한 NiO 스핀밸브 박막의 자기저항 특성을 연구하였다. NiO(600 $\AA$)Ni$_{81}$$Fe_{19}$(50$\AA$)/Co(7 $\AA$)/Cu(20 $\AA$)/Co(7 $\AA$)Ni$_{81}$$Fe_{19}$(70 $\AA$)의 구조를 갖는 스핀밸브박막을 공기중에서 약 80일 간 자연산화시켰을 때, 자기저항비와 교환결합력( $H_{ex}$)이 각각 4.9%와 110 Oe에서 7.3%와 170 Oe로 증가하였다. 이때, 스핀밸브박막의 비저항($\rho$)값은 28$\mu$$\Omega$m에서 17$\mu$$\Omega$m로 감소하였지만 박막의 비저항값의 변화량($\Delta$$\rho$)는 크기변화가 거의 없는 것을 알 수 있었다. 그러므로, 자기저항비의 증가는 자연산화에 따른 비저항값의 감소에 기인한 것으로 생각되며, 저항의 감소는 specular 효과 때문인 것으로 판단된다. 스핀밸브박막의 표면에 형성된 NiFe 산화층의 두께는 약 20 $\AA$인 것으로 추정되며, Auger electron spectroscopy(AES)를 이용하여 분석하였다.하였다.다.
DC 마그네트론 스퍼터링법으로 증착된 700 $\AA$의 NiFe 박막을 박막 증착시 형성시킨 자화용이축에 수직한 자기장을 인가하여 열처리한 후 일축 이방성 자기장의 회전을 조사하였다. NiFe 박막은 열처리온도 160 $^{\circ}C$에서 자화용이축과 자화곤란축을 구분할 수 없는 등방적인 상태가 되었고, 열처리온도가 증가함에 따라 다시 일축 이방성을 갖는 상태가 되었다. 열처리 온도가 400 $^{\circ}C$ 이상인 경우에 급격한 보자력의 증가를 보였다. 열처리 온도가 400 $^{\circ}C$인 경우에 XRD 분석과 AES depth profile은 NiFe 박막 내에서 (111) 방향으로 결정성장이 활발히 일어나며 인접한 전극 Au와 상호화산 현상도 광범위하게 일어남을 보여주었다.
고체상 켜쌓기법(solid phase epitaxy)으로$Ge_xSi_{1-x}/Si$(111) 이종접합을 형성하기 위해 Si(111) 기판위에 먼저 Au를 1000A 증착하고 그 위에 Ge을 1000A 증착시켜 a-Ge/Au/Si(111)구조를 형성하고 이를 고진공 조건에서 이단계 열처리 하였다. 열처리 후 Auger 전자분광분석(AES), X-ray 회절(XRD), 고분해 투과전자현미경(HRTEM) 등을 통해 Au와 Ge의 거동과 형성된 $Ge_xSi_{1-x}$막의 특성을 열처리 조건에 따라 분석하였다. a-Ge/Au/Si(111)구조는 열처리에 의해 Au/GeSi/Si(111)의 구조로 변했으며 형성된$Ge_xSi_{1-x}/$((111)층은 Si(111) 기판의 면 방향과 잘 일치하였다. 그러나 $Ge_xSi_{1-x}/Si$((111)층 내부에 적층결함, 전이, 쌍정, planar defect 등이 주로 (111)면 방향으로 형성되어 있음을 알 수 있었다.
The silicide layer used as a diffusion barrier in microelectronics is typically required to be below 50 nm-thick and, the same time, the silicides also need to have low contact resistance without agglomeration at high processing temperatures. We fabricated Si(100)/15 nm-Ni/15 nm-Co samples with a thermal evaporator, and annealed the samples for 40 seconds at temperatures ranging from $700^{\circ}C$ to $1100^{\circ}C$ using rapid thermal annealing. We investigated microstructural and compositional changes during annealing using transmission electron microscopy and auger electron spectroscopy. Sheet resistance of the annealed sample stack was measured with a four point probe. The sheet resistance measurements for our proposed Co/Ni composite silicide was below 8 $\Omega$/sq. even after annealing $1100^{\circ}C$, while conventional nickel-monosilicide showed abrupt phase transformation at $700^{\circ}C$. Microstructure and auger depth profiling showed that the silicides in our sample consisted of intermixed phases of $CoNiSi_{x}$ and NiSi. It was noticed that NiSi grew rapidly at the silicon interface with increasing annealing temperature without transforming into $NiSi_2$. Our results imply that Co/Ni composite silicide should have excellent high temperature stability even in post-silicidation processes.
A magnetic field annealing is firstly used for nanostructured Sm-Co/Co films, prepared by magnetron sputtering method. The effects of magnetic field annealing on single-layered Sm-Co films are different from those on multi-layered Sm-Co/Co films. A detailed analysis of microstructures and magnetic properties is made by means of HRTEM, Auger electron spectroscopy, XRD and Physical Property Measurement System (PPMS). From magnetic properties and microstructure analysis, it was confirmed that these differences originate from the effects of magnetic field annealing on crystallization behavior of the films. The relationship between magnetic properties and microstructures explains a different demagnetization process of single-layered and multilayered films. For the single-layered Sm-Co films, magnetic-field-annealing makes the main phases change from $CaCu_5/ to Zn_2Th_{17}$ structure, resulting in a decrease of coercivity. The results show that the magnetic-field-annealing is useful to improve the properties of nanostructured Sm-Co(30 nm)/Co(10 nm) films, which ascribe to improving the pinning effectiveness in coercivity mechanism and decreasing the magnetostatic interaction of films. A very high coercivity about 0.7 T was obtained from nanoscaled multi-layered Sm-Co(30 nm)-/Co(10 nm) films.
ZnO는 직접 천이형 반도체로써, 상온에서 3.4eV에 해당하는 띠틈을 가지고 있다. 뿐만 아니라 60meV의 큰 엑시톤 결합에너지를 가지고 있어 단파장 광전 소자 영역의 LED(Light Emitting Diode)나 LD(Laser Diode)에 널리 사용되고 있다. 하지만 일반적으로 격자틈새 Zn(Zni2+)이온이나 O 빈자리(V02+)이온과 같은 자연적인 도너 이온이 존재하여 n-형 전도성을 나타낸다. 그러므로 ZnO계 LED와 LD의 개발에 있어서 가장 중요한 연구 과제는 재현성 있고 안정된 고농도의 p-형 ZnO박막을 성장시키는 것이다. 하지만, 자기보상효과나 얕은 억셉터 준위, 억셉터의 낮은 용해도로 인하여 어려움을 가지고 있다. 본 연구에서는 고품질의 p-형 ZnO박막을 제작하기 위해 AlN를 도핑시킨 ZnO박막을 RF 마그네트론 스퍼터링 법을 이용하여 Ar과 O2분위기에서 성장시켰다. ZnO와 AlN타겟을 동시에 사용하였으며, ZnO타겟에 걸어준 RF 파워는 80W, AlN타겟에 걸어준 RF 파워는 5~20W로 변화시켰다. 박막의 전기적, 광학적 특성은 XPS (X-ray Photoelectron Spectroscopy), REELS (Reflection Electron Energy Loss Spectroscopy), XRD (X-ray Diffraction), SIMS (Secondary Ion Mass Spectrometry), AES (Auger Electron Spectroscopy), Hall measurement를 이용하여 연구하였다. XPS측정결과, AlN를 도핑시킨 ZnO박막의 Zn2p3/2와 O1s피크는 undoped ZnO박막의 피크보다 낮은 결합에너지에서 측정되었다. 모든 박막이 결정화 되었으며, (002)방향으로 우선적으로 성장된 것을 확인할 수 있었다. 홀 측정 결과, 기판을 $200^{\circ}C$로 가열하면서 성장시킨 박막이 p-형을 나타내었으며, 비저항(Resistivity)이 $5.51{\times}10^{-3}{\Omega}{\cdot}m$, 캐리어 농도(Carrier Concentration)가 $1.96{\times}1018cm^{-3}$, 이동도(Mobility)가 $481cm^2$/Vs이었다. 또한 QUEELS -Simulation에 의한 광학적 특성분석 결과, 가시광선영역에서 투과율이 90%이상으로 투명전자소자로의 응용이 가능하다는 것을 보여주었다.
This paper describes results for surface and bulk characterization of the most promising thin film solar cell material for high performance devices, (Ag,Cu) (In,Ga) Se2 (ACIGS). This material in particular exhibits a range of exotic behaviors. The surface and general materials science of the material also has direct implications for the operation of solar cells based upon it. Some of the techniques and results described will include scanning probe (AFM, STM, KPFM) measurements of epitaxial films of different surface orientations, photoelectron spectroscopy and inverse photoemission, Auger electron spectroscopy, and more. Bulk measurements are included as support for the surface measurements such as cathodoluminescence imaging around grain boundaries and showing surface recombination effects, and transmission electron microscopy to verify the surface growth behaviors to be equilibrium rather than kinetic phenomena. The results show that the polar close packed surface of CIGS is the lowest energy surface by far. This surface is expected to be reconstructed to eliminate the surface charge. However, the AgInSe2 compound has yielded excellent atomic-resolution images of the surface with no evidence of surface reconstruction. Similar imaging of CuInSe2 has proven more difficult and no atomic resolution images have been obtained, although current imaging tunneling spectroscopy images show electronic structure variations on the atomic scale. A discussion of the reasons why this may be the case is given. The surface composition and grain boundary compositions match the bulk chemistry exactly in as-grow films. However, the deposition of the heterojunction forming the device alters this chemistry, leading to a strongly n-type surface. This also directly explains unpinning of the Fermi level and the operation of the resulting devices when heterojunctions are formed with the CIGS. These results are linked to device performance through simulation of the characteristic operating behaviors of the cells using models developed in my laboratory.
2.45 GHz 마이크로웨이브를 사용하는 전자회전공명 플라즈마를 이용하여 화학적 기상증착(electron cyclotron resonance plasma enhanced chemical vapor deposition; ECR-PECVD) 방법으로 ECR 마이크로웨이브 power, CH$_4$/H$_2$가스 혼합비와 유량, 증착시간, 그리고 기판 bias 전압 등을 변화시켜 가면서 수소가 함유된 비정질 탄소(a-C:H) 박막을 증착하였고, 증착시킨 박막의 특성을 AES(Auger electron spectroscopy), ERDA(elastic recoil detection analysis), FTIR(Fourier transform infrared) 및 Raman 측정 등으로 조사하였다. 증착시킨 a-C:H 박막은 탄소 및 수소원소들로만 구성되어 있음을 AES 측정으로 확인하였다. 그리고 FTIR 측정으로부터 a-C:H 박막은 대부분 sp$^3$결합을 하고 있고 일부는 sp$^2$결합을 하고 있음을 확인하였으며, CH$_4$/H$_2$가스 혼합비와 유량의 변화가 a-C:H 박막의 탄소와 수소의 결합구조에 큰 영향을 미치지 않았으며, 다만 증착시간이 증가할수록 탄소와 수소 원자들의 결합구조가 $CH_3$구조에서 CH$_2$나 CH 구조로 변하고 있음을 알았다. 또한 Raman 스펙트럼의 Gaussian curve fitting을 통하여 sp$^3$/sp$^2$의 결합수에 비례하는 D 및 G peak의 면적 강도비(I$_{D}$/l$_{G}$)는 기판 bias 전압을 증가시킬수록 증가하였으며, 경도도 역시 증가하였다.하였다.
100 nm-thick hydrogenated amorphous silicon $({\alpha}-Si:H)$ films were deposited on a glass and glass/30 nm Ni substrates by inductively-coupled plasma chemical vapor deposition (ICP-CVD) at temperatures ranging from 100 to $550^{\circ}C$. The sheet resistance, microstructure, phase transformation and surface roughness of the films were characterized using a four-point probe, AFM (atomic force microscope), TEM (transmission electron microscope), AES (Auger electron spectroscopy), HR-XRD(high resolution X-ray diffraction), and micro-Raman spectroscopy. A nano-thick NiSi phase was formed at substrate temperatures >$400^{\circ}C$. AFM confirmed that the surface roughness did not change as the substrate temperature increased, but it increased abruptly to 6.6 nm above $400^{\circ}C$ on the glass/30 nm Ni substrates. HR-XRD and micro-Raman spectroscopy showed that all the Si samples were amorphous on the glass substrates, whereas crystalline silicon appeared at $550^{\circ}C$ on the glass/30 nm Ni substrates. These results show that crystalline NiSi and Si can be prepared simultaneously on Ni-inserted substrates.
Traveling wave reactor atomic layer epitaxy(ALE) 방법으로 ZnS와 ZnS:Tb박막을 성장하고 성장 조건에 따른 박막 특성을 연구하였다. ZnS박막의 precursor로는 ZnCl2와 H2S를 이용하였으며, 기판 온도 400-$500^{\circ}C$범위에서 성장하였다. 본 연구 논문에서는 성장온 도에 따른 ZnS박막의 결정성의 변화와 precursor에 의한 Cl유입량의 변화를 살펴보고 투과 전자현미경과 주사형 전자현미경으로 ZnS박막의 표면 형상과 미세구조를 관찰하였다. 연구 결과에 의하면 ALE에 의하여 매우 균일하고 hexagonal 2H구조의 결정성이 향상되었다. 성 장온도 $400^{\circ}C$에서 약 9at.%, $500^{\circ}C$에서 약 1at.%의 Cl이 유입되었으며, 박막 내에 유입된 Cl 은 표면으로의 segregation현상을 나타내었다. 또한 electroluminescent 소자의 녹색 형광재 료인 ZnS:Tb을 Tb precursor로 tris(2,2,6,6-tetramethyl 3,5-heptandionato)terbium을 이용하 여 성장하고 박막 결정성과 박막 내 불순물이 유입되는 경향 등을 연구하였다. Auger electron spectroscopy분석 결과에 의하면 0.5at.%의 Tb이 표함된 AnS:Tb박막은 C은 거의 포함하고 있지 않았으나 O은 약 1at.%정도 포함되어 있었다. ZnS:Tb박막은 Tb과 소량의 O 을 함유하고 있음에도 불구하고 결정성은 우수한 hexagonal구조를 유지하고 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.