• Title/Summary/Keyword: Au-Zn IMC

Search Result 6, Processing Time 0.029 seconds

Reliability study of Sn-Zn lead-free solder for SMT application (표면실장 적용을 위한 Sn-Zn 무연 솔더의 신뢰성 연구)

  • Yun, Jeong-Won;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.219-221
    • /
    • 2005
  • Sn-9Zn solder balls were bonded to Cu, ENIG (Electroless Nickel/Immersion Gold) and electrolytic Au/Ni pads, and the effect of aging on their joint reliability was investigated. The interfacial products were different from the general reaction layer formed in a Sn-base solder. The intermetallic compounds formed in the solder/Cu joint were $Cu_{5}Zn_{8}$ and $Cu_{6}Sn_{5}$. After aging treatment, voids formed irregularly at the bottom side of the solder because of Sn diffusion into the $Cu_{5}Zn_{8}$ IMC. In the case of the solder/ENIG joint, $AuZn_{3}$ IMCs were formed at the interface. In the case of the Au/Ni/Cu substrate, an $AuZn_{3}$ IMC layer formed at the interface due to the fast reaction between Au and Zn. In addition, the $AuZn_{3}$ IMC layer became detached from the interface after reflow. When the aging time was extended to 100 h, $Ni_{5}Zn_{21}$ IMC was observed on the Ni substrate.

  • PDF

Microstructures and Shear Strength of Sn-Zn Lead-free Solder Joints (Sn-Zn계 무연 솔더접합부의 전단강도와 미세구조)

  • 김경섭;양준모;유정희
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.59-64
    • /
    • 2003
  • Microstructure and shear strength of Sn-Zn lead-free solders and Au/Ni/Cu UBM joint under thermal aging conditions was investigated. The samples were aged isothermally at 10$0^{\circ}C$ and 15$0^{\circ}C$ for 300, 600, and 900 hours. The IMCs(Intermetallic Compound) at the interface between solder and UBM were examined by FESEM and TEM. The results showed that the shear strength was decreased with aging time and temperature. The solder ball with high activated RA flux had about 8.2% higher shear strength than that of RMA flux. Poor wetting and many voids were observed in the fractured solder joint with of RMA flux. The decreased shear strengths were caused by IMC growth and Zn grain coarsening. Zn reacted with Au and then was transformed to the $\beta$ -AuZn compound. Although AuZn grew first, $r-Ni_5Zn_{21}$ compounds were formed with aging time. The layers indicated by $Ni_5Zn_{21}(1)$, (2), and (3) were formed with the thickness of ∼0.7 ${\mu}{\textrm}{m}$, ∼4 ${\mu}{\textrm}{m}$, and ∼2 ${\mu}{\textrm}{m}$, respectively.

Reliability Investigation and Interfacial Reaction of BGA packages Using the Pb-free Sn-Zn Solder (Sn-Zn 무연솔더를 사용한 BGA패키지의 계면반응 및 신뢰성 평가)

  • Jeon, Hyeon-Seok;Yun, Jeong-Won;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.25-27
    • /
    • 2005
  • Sn-9Zn solder balls were bonded to Cu and ENIG (Electroless Nickel/Immersion Gold) pads, and the effect of aging on their joint reliability was investigated. The interfacial products were different from the general reaction layer formed in a Sn-base solder. The intermetallic compounds formed in the solder/Cu joint were $Cu_{5}Zn_{8}$ and $Cu_{6}Sn_{5}$. After aging treatment, voids formed irregularly at the bottom side of the solder because of Sn diffusion into the $Cu_{5}Zn_{8}$ IMC. In the case of the solder/ENIG joint, $AuZn_{3}$ IMCs were formed at the interface. In the case of the Sn-9Zn/ENIG, the shear strength remained nearly constant in spite of aging for 1000 hours at $150^{\circ}C$. On the other hand, in the case of the Sn-9Zn/Cu, the shear strength significantly decreased after aging at $150^{\circ}C$ for 100hours and then remained constant by further prolonged aging. Therefore, the protective plating layer such as ENIG must be used to ensure the mechanical reliability of the Sn-9Zn/Cu joint.

  • PDF

Reliability evaluation of 1608 chip joint using Sn8Zn3Bi solder under thermal shock (Sn8Zn3Bi 솔더를 이용한 1608 칩 솔더링부의 열충격 신뢰성 평가)

  • Lee, Yeong-U;Kim, Gyu-Seok;Hong, Seong-Jun;Jeong, Jae-Pil;Mun, Yeong-Jun;Lee, Ji-Won;Han, Hyeon-Ju;Kim, Mi-Jin
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.225-227
    • /
    • 2005
  • Sn-8wt%Zn-3wt%Bi (이하, Sn-8Zn-3Bi) 솔더의 장기 신뢰성을 평가하기 위하여 열 충격 시험을 행하였다. 열 충격 시험은 $-40^{\circ}C$에서 $80^{\circ}C$범위에서 1000 사이클 동안 하였다. 접합 기판으로는 각각 OSP(Organic Solderability Preservative), Sn 그리고 Ni/Au 처리를 한 PCB(Printed Circuit Board) 패드를 사용하였다. 접합에 사용한 부품은 1608 Chip(Multi Layer Chip Capacitor, Chip Resistor) 으로 전극 부위에 Sn-37wt%Pb, Sn 도금하여 사용하였다. 솔더링 후 1608 Chip의 전단 강도와 솔더링부에서 미세조직 및 IMC(Inter Metallic Compound) 변화를 관찰하였다. 측정결과, Sn-8Zn-3Bi 솔더의 초기 전단 강도는 기판의 표면처리에 상관없이 약 40N 이상이었다. 그리고 열충격 시험 1000 사이클 후에는 모든 기판에서 2N 정도 약간의 강도 저하를 보였다.

  • PDF

Evaluation of Pull Strengths and Fracture Modes of Solder Joino by Modified Ball Pull Testing with Protrusion Jaw (Protrusion Jaw가 적용된 볼 당김시험을 이용한 솔더 접합부의 강도와 파괴 메커니즘 분석에 관한 연구)

  • Kim Hyoung-Il;Han Sung-Won;Kim Jong-Min;Choi Myung-Ki;Shin Young-Eul
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.34-40
    • /
    • 2005
  • There have been numerous approaches to examine the bonding strengths of solder joints. However, despite the technical and practical limitations, the precedent test methods such as the ball shear and ball pull tests are being used in industrial applications. In this study, the optimum jaw pressure with the modified protrusion jaw was introduced in order to obtain higher successful rate f3r ball pull testing. Furthermore, the pull strengths and fracture modes of Sn-8Zn-3Bi, Sn-4Ag-0.7Cu, and Sn-37Pb eutectic solder after isothermal aging tests ($100^{\circ}C,\;150^{\circ}C$), were evaluated with the protrusion jaw. The pull strength-displacement hysteresis curves and fracture surfaces were carefully investigated to evaluate the correlation between the pull strengths and the fracture modes of each solder. In conclusion, it is verified that Au-Zn IMCs (Intermetallic Compounds) have a detrimental effect on the pull strengths and changed fracture modes of Sn-8Zn-3Bi solder. Meanwhile, the microstructure transformation influences the degradation of pull strengths of Sn-4Ag-0.7Cu and Sn-37Pb solders.

Lower Temperature Soldering of Capacitor Using Sn-Bi Coated $Sn-3.5\%Ag$ Solder (Sn-Bi도금 $Sn-3.5\%Ag$ 솔더를 이용한 Capacitor의 저온 솔더링)

  • Kim Mi-Jin;Cho Sun-Yun;Kim Sook-Hwan;Jung Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.61-67
    • /
    • 2005
  • Since lead (Pb)-free solders for electronics have higher melting points than that of eutectic Sn-Pb solder, they need higher soldering temperatures. In order to decrease the soldering temperature we tried to coat Sn-Bi layer on $Sn-3.5\%Ag$ solder by electroplating, which applies the mechanism of transient liquid phase bonding to soldering. During heating Bi will diffuse into the $Sn-3.5\%Ag$ solder and this results in decreasing soldering temperature. As bonding samples, the 1608 capacitor electroplated with Sn, and PCB, its surface was finished with electroless-plated Ni/Au, were selected. The $Sn-95.7\%Bi$ coated Sn-3.5Ag was supplied as a solder between the capacitor and PCB land. The samples were reflowed at $220^{\circ}C$, which was lower than that of normal reflow temperature, $240\~250^{\circ}C$, for the Pb-free. As experimental result, the joint of $Sn-95.7\%Bi$ coated Sn-3.5Ag showed high shear strength. In the as-reflowed state, the shear strength of the coated solder showed 58.8N, whereas those of commercial ones were 37.2N (Sn-37Pb), 31.4N (Sn-3Ag-0.5Cu), and 40.2N (Sn-8Zn-3Bi). After thermal shock of 1000 cycles between $-40^{\circ}C$ and $+125^{\circ}C$, shear strength of the coated solder showed 56.8N, whereas the previous commercial solders were in the range of 32.3N and 45.1N. As the microstructures, in the solder $Ag_3Sn$ intermetallic compound (IMC), and along the bonded interface $Ni_3Sn_4$ IMC were observed.