• Title/Summary/Keyword: Au-Sn alloy plating

Search Result 8, Processing Time 0.024 seconds

A study on Au-Sn alloy plating layer improving reliability of electrical contacts (전자부품 커넥터의 접속 신뢰성 향상을 위한 Au-Sn 합금 도금층 연구)

  • Choi, Jong Hwan;Son, Injoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.408-416
    • /
    • 2022
  • In this study, the effect of Au-Sn alloy coating on reliability of electrical contacts was investigated via comparison with Au-Co alloy coating. The results show that Au-Sn alloy exhibited lower contact resistance and higher solder spreadability than those of Au-Co alloy after thermal aging. In the case of Au-Co alloy plating, the underlying Ni element diffused into Au-Co layer to form Ni oxides on surface during thermal aging, leading to increased contact resistance and decreased solder spreadability. Meanwhile, for Au-Sn alloy plating, Au-Ni-Sn metallic compound was formed at the interface between Au-Sn layer and underlying Ni layer. This compound acted as a diffusion barrier, thereby inhibiting the diffusion of Ni to Au-Sn layer during thermal aging. Consequently, Au-Sn alloy layer showed better contact reliability than that of Au-Co alloy layer.

Comparison of the Characteristics of Cu-Sn and Ni Pre-Plated Frames Prepared by Electro-Plating (전기도금된 Cu-Sn과 Ni preplated frame의 특성 비교)

  • Lee, D.H.;Jang, T.S.;Hong, S.S.;Lee, J.W.;Yang, H.W.;Hahn, B.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.276-281
    • /
    • 2006
  • In order to improve the performance of PPFs (Pre-Plated Frames), a PPF that employed a Cu-Sn alloy instead of conventionally used Ni was developed and then its properties were investigated. It was found that the electoplated Cu-Sn alloy layer was a mixture of uniformly distributed fine crystallites, resulting In better wettability and crack resistance than those of Ni PPF. Moreover, as in Cu/Ni/Pd/Au PPF, migration of copper atoms from the base metal to the top of the Cu/Cu-Sn/Pd/Au PPF surface was not found although the Cu-Sn layer itself contained considerable amount of copper. It was expected that, by using the newly developed Cu-Sn PPF, any possible heat generation and signal interrupt caused by an external electro-magnetic field could be reduced because the Cu-Sn layer was paramagnetic, i.e., nonmagnetic.

Deposition Optimization and Bonding Strength of AuSn Solder Film (AuSn 솔더 박막의 스퍼터 증착 최적화와 접합강도에 관한 연구)

  • Kim, D.J.;Lee, T.Y.;Lee, H.K.;Kim, G.N.;Lee, J.W.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.49-57
    • /
    • 2007
  • Au-Sn solder alloy were deposited in multilayer and co-sputtered film by rf-magnetron sputter and the composition control and analysis were studied. For the alloy deposition condition, each components of Au or Sn were deposited separately. On the basis of pure Sn and Au deposition, the deposition condition for Au-Sn solder alloy were set up. As variables, the substrate temperature, the rf-power, and the thickness ratio were used for the optimum composition. For multilayer solder alloy, the roughness and the composition of solder alloy were controlled more accurately at the higher substrate temperature. In contrast, for co-sputtered solder, the substrate temperature influenced little to the composition, but the composition could be controlled easily by rf-power. In addition, the co-sputtered solder film mostly consisted of intermetallic compound, which formed during deposition. The compound were confirmed by XRD. Without flux during bonding of solder alloy film on leadframe, the adhesion strength were measured. The maximum shear stress was $330(N/mm^2)$ for multilayer solder with Au 10wt% and $460(N/mm^2)$ for co-sputtered solder with Au 5wt%.

  • PDF

A STUDY ON THE ADHESIVE BOND STRENGTH OF COMPOSITE RESIN TO Au-Ag-Cu-Pd ALLOY (Au-Ag-Cu-Pd합금과 복합레진간의 접착결합강도에 관한 연구)

  • Seol Young-Hoon;Jung Chang-Mo;Jeon Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.3
    • /
    • pp.378-395
    • /
    • 1994
  • The purpose of this study was to investigate the effect of various metal surface treatments and adhesive systems on the flexural bond strength of composite resin to Au-Ag-Cu-Pd alloy. The specimens were divided into nine groups by the combinations of surface treatment methods and adhesive systems. The types of surface treatment in this study were alumina blasting only, alumina blasting-Sn plating, alumina blasting-heating and three kinds of adhesive system used in this study were Silicoater system(Heraeus Kulzer GmbH,Germany), Superbond C & B(Sun Medical Co.,Ltd.,Japan) and Cesead opaque primer(Kurary Co.,Ltd.,Japan). After surface treatments and adhesive systems were applied, each specimen was built up with Dentacolor composite resin (Heraeus Kulzer GmbH,Germany). Four-point flexural bond strength was measured by Instron universal testing machine (Model 4301,U.S.A.) and modes of failure were observed by SEM(JEOL,SSM-840A,Japan). The obtained results were as follows: 1. The group that was bonded with Superbond C & B after alumina blasting-heating shelved the highest bond strength with significant difference among the groups, except the group with Cesead opaque primer after alumina blasting-Sn plating(P<0.05). 2. In the groups bonded with Cesead opaque primer, there was significant difference only in the bond strength between the alumina blasting-Sn plating group and alumina blasting group, where the former showed a higher bond strength(P<0.05). 3. In the groups bonded with Silicoater system, there were no significant differences in bond strength regardless of the surface treatment method(P<0.05). 4. In SEM evaluation, the groups of high bond strength, especially bonded with Superbond C & B after alumina blasting-heating and Cesead opaque primer after alumina blasting-Sn plating, revealed mainly cohesive-adhesive failure, whereas the others showed the tendency of adhesive failure.

  • PDF

Retardation of Massive Spalling by Palladium Layer Addition to Surface Finish (팔라듐 표면처리를 통한 Massive Spalling 현상의 억제)

  • Lee, Dae-Hyun;Chung, Bo-Mook;Huh, Joo-Youl
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1041-1046
    • /
    • 2010
  • The reactions between a Sn-3.0Ag-0.5Cu solder alloy and electroless Ni/electroless Pd/immersion Au (ENEPIG) surface finishes with various Pd layer thicknesses (0, 0.05, 0.1, 0.2, $0.4{\mu}m$) were examined for the effect of the Pd layer on the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow at $235^{\circ}C$. The thin layer deposition of an electroless Pd (EP) between the electroless Ni ($7{\mu}m$) and immersion Au ($0.06{\mu}m$) plating on the Cu substrate significantly retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow. Its retarding effect increased with an increasing EP layer thickness. When the EP layer was thin (${\leq}0.1{\mu}m$), the retardation of the massive spalling was attributed to a reduced growth rate of the $(Cu,Ni)_6Sn_5$ layer and thus to a lowered consumption rate of Cu in the bulk solder during reflow. However, when the EP layer was thick (${\geq}0.2{\mu}m$), the initially dissolved Pd atoms in the molten solder resettled as $(Pd,Ni)Sn_4$ precipitates near the solder/$(Cu,Ni)_6Sn_5$ interface with an increasing reflow time. Since the Pd resettlement requires a continuous Ni supply across the $(Cu,Ni)_6Sn_5$ layer from the Ni(P) substrate, it suppressed the formation of $(Ni,Cu)_3Sn_4$ at the $(Cu,Ni)_6Sn_5/Ni(P)$ interface and retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer.

Design and Fabrication of a Low-cost Wafer-level Packaging for RF Devices

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Choi, Hyun-Jin;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.91-95
    • /
    • 2014
  • This paper presents the structure and process technology of simple and low-cost wafer-level packaging (WLP) for thin film radio frequency (RF) devices. Low-cost practical micromachining processes were proposed as an alternative to high-cost processes, such as silicon deep reactive ion etching (DRIE) or electro-plating, in order to reduce the fabrication cost. Gold (Au)/Tin (Sn) alloy was utilized as the solder material for bonding and hermetic sealing. The small size fabricated WLP of $1.04{\times}1.04{\times}0.4mm^3$ had an average shear strength of 10.425 $kg/mm^2$, and the leakage rate of all chips was lower than $1.2{\times}10^{-5}$ atm.cc/sec. These results met Military Standards 883F (MIL-STD-883F). As the newly proposed WLP structure is simple, and its process technology is inexpensive, the fabricated WLP is a good candidate for thin film type RF devices.

A study on the interfacial reactions between electroless Ni-P UBM and 95.5Sn-4.0Ag-0.5Cu solder bump (무전해 Ni-P UBM과 95.5Sn-4.0Ag-0.5Cu 솔더와의 계면반응 및 신뢰성에 대한 연구)

  • ;;Sabine Nieland;Adreas Ostmann;Herbert Reich
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.85-91
    • /
    • 2002
  • Even though electroless Hi and Sn-Ag-Cu solder are widely used materials in electronic packaging applications, interfacial reactions of the ternary Ni-Cu~Sn system have not been known well because of their complexity. Because the growth of intermetallics at the interface affects reliability of solder joint, the intermetallics in Ni-Cu-Sn system should be identified, and their growth should be investigated. Therefore, in present study, interfacial reactions between electroless Ni UB7f and 95.5Sn-4.0Ag-0.5Cu alloy were investigated focusing on morphology of the IMCs, thermodynamics, and growth kinetics. The IMCs that appear during a reflow and an aging are different each other. In early stage of a reflow, ternary IMC whose composition is Ni$_{22}$Cu$_{29}$Sn$_{49}$ forms firstly. Due to the lack of Cu diffusion, Ni$_{34}$Cu$_{6}$Sn$_{60}$ phase begins growing in a further reflow. Finally, the Ni$_{22}$Cu$_{29}$Sn$_{49}$ IMC grows abnormally and spalls into the molten solder. The transition of the IMCs from Ni$_{22}$Cu$_{29}$Sn$_{49}$ to Ni$_{34}$Cu$_{6}$Sn$_{60}$ was observed at a specific temperature. From the measurement of activation energy of each IMC, growth kinetics was discussed. In contrast to the reflow, three kinds of IMCs (Ni$_{22}$Cu$_{29}$Sn$_{49}$, Ni$_{20}$Cu$_{28}$Au$_{5}$, and Ni$_{34}$Cu$_{6}$Sn$_{60}$) were observed in order during an aging. All of the IMCs were well attached on UBM. Au in the quaternary IMC, which originates from immersion Au plating, prevents abnormal growth and separation of the IMC. Growth of each IMC is very dependent to the aging temperature because of its high activation energy. Besides the IMCs at the interface, plate-like Ag3Sn IMC grows as solder bump size inside solder bump. The abnormally grown Ni$_{22}$Cu$_{29}$Sn$_{49}$ and Ag$_3$Sn IMCs can be origins of brittle failure.failure.

  • PDF

Gilt-bronze Standing Avalokiteshvara from Gyuam-ri, Buyeo: The Structure and Production Technique (부여 규암리 출토 금동관음보살 입상의 형상과 제작기법)

  • Shin, Yongbi;Kim, Jiho
    • Conservation Science in Museum
    • /
    • v.23
    • /
    • pp.1-16
    • /
    • 2020
  • In this paper, Gilt-bronze Standing Avaolkiteshvara (National Treasure No. 293, M355) excavated at Gyuam-ri in Buyeo was observed with a microscope to identify the production technique applied to it. It was also analyzed with XRF and hard X-ray to identify the composition and the surface treatment techniques and casting method applied. In this statue, Avalokiteshvara is standing upright on a lotus pedestal. The lotus designs on the pedestal and those on the shawl flowing down on both sides of the statue are characteristic of Buddhist statues from the seventh century or later. The use of supports to affix the outer and inner molds and traces of injected cast were observed in the interior of the pedestal. The blisters on the arms and pedestal created during the bronze casting indicate the use of lost-wax casting, which was popularly employed for the production of mid- or small-sized gilt-bronze Buddhist statues in ancient times. The composition analysis identified a copper-tin-lead ternary alloy in the interior of the statue that was conventional used in the sixth and seventh centuries. It is likely that this simple alloy was used to facilitate casting and produce clearer expressions of designs and ornaments on the statue. Mercury (Hg) was detected on the surface of the statue, indicating the use of amalgam-plating with gold (Au) dissolved in mercury. This plating method is a common surface treatment technique used for small gilt-bronze statutes in ancient Korea.